
Managing dependencies is
more than running
“composer update”

Nils Adermann
@naderman
Private Packagist
https://packagist.com

Nils Adermann
@naderman

What are Dependencies?

- Services
- APIs
- Client-side Integrations (OAuth / External JS / Analytics / …)

- Software
- Libraries
- Programs / Tools

- External Assets

Nils Adermann
@naderman

What is Dependency Management?

- Assembly

- Dependency Change Management

- Risk Analysis & Reduction

May happen at build time or at runtime

Nils Adermann
@naderman

Dependency Assembly

- Installation of Libraries, Tools, etc.
- composer install
- apt-get install foo
- Application of Configuration Management (Puppet, Chef, Ansible, Salt, …)

- Configuration for Connections to Services, external APIs
- Authentication
- Glue Code

- Connection to Services (usually at Runtime)

Nils Adermann
@naderman

Dependency Assembly

Past:

- Step-by-Step installation instructions
- Readmes, Delete and reinstall individual packages

Today:

- Description of a system state (e.g. composer.json, top.sls)
- Tools to move the system into the state (e.g. composer, salt)

Nils Adermann
@naderman

Dependency Change Management

- Dependency Change
- Adding, Removing, Updating, Replacing of Libraries
- Replacing APIs
- composer update

- Dependency Change Management
- Balance Risks, Consequences, Cost & Advantages
- Architecture Decisions which enable “Change”

- Example: Abstraction to replace concrete service

Nils Adermann
@naderman

Risk Analysis: Availability

Affects Assembly

Examples:

- Open Source Library deleted
- Payment Service unavailable
- EU VATId Service out of order
- Jenkins not accessible

Nils Adermann
@naderman

Risk Reduction: Availability

- Software is available when you have a copy
- composer cache
- Forks
- Private Packagist or Satis

- Services are available depending on external factors
- Can the service be called asynchronously?

- e.g. run VATId check after payment
- e.g. Private Packagist inits package in worker, no GitHub access in controller

- Are errors clearly presented to users?
- e.g. low timeouts, error messages when external Service X not available

Nils Adermann
@naderman

Risk Analysis: Compatibility

Affects Change Management

Examples:

- BC Break in Library Update
- API Semantics change:

- Payment API no longer supports credit card tokens, only payment tokens valid for Apple
Pay etc., too

Nils Adermann
@naderman

Risk Reduction: (New) Dependencies

Quality Criteria for software libraries (and services)

- Number of Maintainers / Developers
- Actively Developed?
- How many users?

- Packagist shows installation count

- Where is a library being installed from?
- GitHub, self-hosted svn server? -> Availability

- Alternatives / how easy to replace? Complexity?
- Could you take over maintenance?

Nils Adermann
@naderman

Risk Reduction: Compatibility

Semantic Versioning (Semver) promises Compatibility

x.y.z

- Must be used consistently
- Only valuable if BC/Compatibility promise formalized

- See http://symfony.com/doc/current/contributing/code/bc.html

- Otherwise choose narrower Version Constraints, check more frequently
- e.g. ~1.2.3 instead of ^1.2.3

http://symfony.com/doc/current/contributing/code/bc.html

Nils Adermann
@naderman

Risk Reduction: Compatibility

- Automated
- Tests
- Static Analysis

- Manual
- Read Changelogs (and write them!)
- Experience which libraries break BC

Nils Adermann
@naderman

Risk Reduction: Compatibility

- “composer update”
- no isolation of problems unless run very frequently

- “composer update <package...>”
- explicit conscious updates

- “composer update --dry-run [<package...>]”
- Understanding and preparing effects of updates

Nils Adermann
@naderman

How do partial updates work?

{ “name”: “zebra/zebra”,
“require”: {

“horse/horse”: “^1.0” }}

{ “name”: “giraffe/giraffe”,
“require”: {

“duck/duck”: “^1.0” }}

Nils Adermann
@naderman

How do partial updates work?

{ “name”: “horse/horse”,
“require”: {

“giraffe/giraffe”: “^1.0” }}

{ “name”: “duck/duck”,
“require”: {}}

Nils Adermann
@naderman

How do partial updates work?

{
“name”: “my-project”,
“require”: {

“zebra/zebra”: “^1.0”,
“giraffe/giraffe”: “^1.0”

}
}

Nils Adermann
@naderman

How do partial updates work?

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0

Now each package releases 1.1

Nils Adermann
@naderman

How do partial updates work?

Project zebra 1.1

giraffe 1.0

horse 1.0

duck 1.0

$ composer update --dry-run zebra/zebra
Updating zebra/zebra (1.0 -> 1.1)

Nils Adermann
@naderman

How do partial updates work?

Project zebra 1.1

giraffe 1.0

horse 1.1

duck 1.0

$ composer update --dry-run zebra/zebra --with-dependencies
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

Nils Adermann
@naderman

How do partial updates work?

Project zebra 1.1

giraffe 1.1

horse 1.0

duck 1.0

$ composer update --dry-run zebra/zebra giraffe/giraffe
Updating zebra/zebra (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)

Nils Adermann
@naderman

How do partial updates work?

Project zebra 1.1

giraffe 1.1

horse 1.1

duck 1.1

$ composer update zebra/zebra giraffe/giraffe --with-dependencies
Updating duck/duck (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

Nils Adermann
@naderman

The Lock File

- Contents
- all dependencies including transitive dependencies

- Exact version for every package
- download URLs (source, dist, mirrors)
- Hashes of files

- Purpose
- Reproducibility across teams, users and servers
- Isolation of bug reports to code vs. potential dependency breaks
- Transparency through explicit updating process

Nils Adermann
@naderman

Commit The Lock File

- If you don’t
- composer install without a lock file is a composer update
- Affects Assembly

- Conflict can randomly occur on install
- You may not get the same code

- You no longer manage change
Change is managing you!

- The lock file exists to be commited!

The Lock file will conflict

Nils Adermann
@naderman

How to resolve lock merge conflicts?

- composer.lock cannot be merged without conflicts
- contains hash over relevant composer.json values

- git checkout <refspec> -- composer.lock
- git checkout master -- composer.lock

- Repeat: composer update <list of deps>
- Store parameters in commit message
- Separate commit for the lock file update

Nils Adermann
@naderman

Day 0: “Initial Commit”

Project

zebra 1.0 giraffe 1.0

Project

zebra 1.0 giraffe 1.0

master

composer.lock
- zebra 1.0
- giraffe 1.0

dna-upgrade

composer.lock
- zebra 1.0
- giraffe 1.0

Nils Adermann
@naderman

Week 2: Strange new zebras require duck

Project

zebra 1.1 giraffe 1.0

Project

zebra 1.0 giraffe 1.0

duck 1.0

master

composer.lock
- zebra 1.1
- giraffe 1.0
- duck 1.0

dna-upgrade

composer.lock
- zebra 1.0
- giraffe 1.0

Week 3: Duck 2.0

Nils Adermann
@naderman

Week 4: Giraffe evolves to require duck 2.0

Project

zebra 1.1 giraffe 1.0

Project

zebra 1.0 giraffe 1.2

duck 1.0 duck 2.0

master

composer.lock
- zebra 1.1
- giraffe 1.0
- duck 1.0

dna-upgrade

composer.lock
- zebra 1.0
- giraffe 1.2
- duck 2.0

Nils Adermann
@naderman

Text-based Merge

Project

zebra 1.1 giraffe 1.2

duck 1.0 duck 2.0

Merge results in invalid dependenciesmaster

composer.lock
- zebra 1.1
- giraffe 1.2
- duck 1.0
- duck 2.0

Nils Adermann
@naderman

Reset composer.lock

Project

giraffe 1.0

dna-upgrade

composer.lock
- zebra 1.1
- giraffe 1.0
- duck 1.0

zebra 1.1

duck 1.0

git checkout <refspec> -- composer.lock
git checkout master -- composer.lock

Nils Adermann
@naderman

Apply the update again

Project

zebra 1.1 giraffe 1.2

duck 2.0

composer update giraffe
 --with-dependencies

master

composer.lock
- zebra 1.1
- giraffe 1.2
- duck 2.0

Nils Adermann
@naderman

Risk Analysis: Compliance / Legal

Affects Change Management

Examples:

- Viral Copy-Left License not compatible with proprietary product
- Terms of Service

- May I use an API for my services?
Cloudflare / packagist.org

- How much time do I have when a supplier terminates the service?
- SLA with sufficient support?

Nils Adermann
@naderman

Risk Minimization: Compliance / Legal

- Software dependency license must fit product license or customer
requirements
- composer licenses
- Private Packagist License Review

- Terms of Service / SLA / Contracts
- Criteria for selection
- Negotiable
- Strong dependencies justify financial expenses to create security

Nils Adermann
@naderman

Assessing & Managing Risk

- Formulate a Plan B
- Identify problems which are probable and which have great effects

- Dependencies are great! They can save tons of money and time
- Only spend resources on reducing risk until the risk is acceptable

Nils Adermann
@naderman

Summary

- composer update [--dry-run] <package>
- git checkout <branch> -- composer.lock
- Formalize BC promises for users of your

libraries
- SemVer: Don’t be afraid to increase the

major version
- Document changes to dependencies

- Have a plan B
- Don’t waste resources on potential

problems which are unlikely to occur or
have insignificant effects

- Dependencies are great!
Benefit usually greater than cost

Developers must consider dependency management from a business perspective
Business / Management must not ignore risk from software dependencies

E-Mail: n.adermann@packagist.com
Twitter: @naderman

Thank you!
Questions / Feedback?

https://joind.in/talk/8f188

https://packagist.com
10% off first 12 months with code phptek2018

mailto:n.adermann@packagist.com
http://twitter.com/naderman
https://joind.in/talk/8f188
https://packagist.com

