
Connecting
Symbolic Task Planning

with Motion Control on ARMAR-III
Using Object-Action Complexes

Student Research Thesis
of

Nils Adermann

At the faculty of Computer Science
Institute for Anthropomatics

Advisor: Prof. Dr.-Ing. Rüdiger Dillmann
Supervisor: Dr.-Ing. Tamim Asfour

Research Period: 1 June 2010 – 31 August 2010

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu





I declare that I have developed and written the enclosed Student Research Thesis com-
pletely by myself, and have not used sources or means without declaration in the text.

Karlsruhe, 31. August 2010





Abstract
This thesis presents an architecture enabling humanoid robots to plan and
execute sequences of hierarchical Object-Action Complexes (OACs). OACs
define expected partial world state transformations resulting from OAC ex-
ecution. A perception processing system populates short-term memory with
abstractions of low-level sensory information. A Central Executive Agent
(CEA) communicates short-term memory contents to the symbolic planning
system PKS (Planning with Knowledge and Sensing) and receives instruc-
tions in the form of OACs. The CEA instantiates OACs from long-term
memory with object information from short-term memory in order to ex-
ecute them. Plan execution is continuously monitored and plans can be
adjusted or regenerated autonomously.

Zusammenfassung
Diese Studienarbeit stellt eine Architektur für humanoide Roboter vor, die
Objekt-Aktion Komplexe (OACs) verwendet um auf einem humanoiden Ro-
boter Handlungsabläufe zu planen und auszuführen. OACs beschreiben die
aus ihrer Ausführung resultierenden partiellen Transformationen des Weltzu-
stands. Ein System zur Verarbeitung von Perzeption füllt das Kurzzeitge-
dächtnis des Roboters mit abstrahierten Repräsentationen der Sensorinfor-
mationen. Ein Zentraler Exekutiver Agent (CEA) sendet die Inhalte des
Kurzzeitgedächtnisses an das symbolischen Planungssystem PKS (Planung
mit Wissen und Wahrnehmung) und erhält von ihm in Form von OACs
Anweisungen zur Ausführung. Der CEA instanziiert die erhaltenen OACs
mit Wissen aus dem Langzeitgedächtnis und Objektinformationen aus dem
Kurzzeitgedächtnis um sie anschließend auszuführen. Die Ausführung des
Plans wird kontinuierlich überwacht, sodass der Plan gegebenenfalls autonom
angepasst oder neu generiert werden kann.





Contents

1 Motivation 1
1.1 Current State of ARMAR in the Kitchen . . . . . . . . . . . . . . . . . . 1
1.2 Context and Goal of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of the Art 3
2.1 Planning in Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 PKS: Planning with Knowledge and Sensing . . . . . . . . . . . . 4
2.2 State of the Art in Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Task Planning on the Humanoid Robot HRP2 . . . . . . . . . . . 5
2.2.2 Hierarchical Planning with TREX on the Mobile Manipulation

Platform PR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 ICE in Robotics Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Integration Concept with Object-Action Complexes 7
3.1 OACs in PACO+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Applying the OAC Concept in Software . . . . . . . . . . . . . . . . . . . 7

3.2.1 OACs in PKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Action and Object Representations . . . . . . . . . . . . . . . . . . 8
3.2.3 An Executive for Object-Action Complexes . . . . . . . . . . . . . 10

4 Implementation of the OAC-based Integration Concept 13
4.1 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Conceptual View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Technology Used in the Implementation . . . . . . . . . . . . . . . 14

4.2 PKS: Planning with Knowledge and Sensing . . . . . . . . . . . . . . . . . 15
4.3 Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Long-Term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Implementation of the Central Executive Agent . . . . . . . . . . . . . . . 19
4.6 Component Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.6.1 SymbolicExecution::CEAControllerTopic . . . . . . . . . . . . . . . 21
4.6.2 SymbolicExecution::CEAInfoTopic . . . . . . . . . . . . . . . . . . 21
4.6.3 SymbolicExecution::CEAInfo . . . . . . . . . . . . . . . . . . . . . 22
4.6.4 Planning::PlanControllerTopic . . . . . . . . . . . . . . . . . . . . 22
4.6.5 Planning::PlannerInfo . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6.6 LTM::LTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Application of SPOAC to ARMAR-III 25
5.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 OACs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Resulting plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Conclusion and Outlook 41





1 Motivation

The majority of robots in use today solve only one or few specific problems in easily
predictable constraint environments. Rigid requirements on predictability may suit in-
dustrial robots working in assembly lines but they pose a problem for general purpose
service robots. A service robot collaborating with humans in environments made for
humans like a household will encounter a much wider variety of objects and activities.
A service robot operating in these environments will without doubt have to cope with
unexpected situations.

Artificial intelligence has been a research subject for more than 50 years and many
results have been found using simulation or simple robots. But only recent advances
in hardware and mechanics have made it feasible to build general purpose robots like
humanoid robots. The open environments these operate in and inaccuracies of their
sensors pose additional problems for artificial intelligence. Decisions need to be made
relying on uncertain data and unexpected situations need to be analyzed and understood
to react appropriately.

Planning is one of the fields of artificial intelligence. It deals with generating sequences
of actions – plans – to solve problems given an initial state and a set of constraints.

ARMAR-III [1] is a humanoid service robot which serves as an example of a robot with
the outlined problems. This thesis describes the robust integration of planning software
on ARMAR-III. It takes into account that ARMAR-III has only limited knowledge
of the world’s state, cannot always move accurately and receives inaccurate sensory
information.

1.1 Current State of ARMAR in the Kitchen

At present ARMAR-III is able to perform numerous tasks in its kitchen environment.
Using its stereo camera vision system it can recognise objects of various shapes, colours
and textures. Combined with motion control of its 7-DOF arms ARMAR-III is capable
of grasping these objects with its pneumatically actuated hands. A laser scanner allows
the robot to locate itself inside the kitchen. ARMAR-III can recognise and grasp door
handles allowing it to open the doors of the kitchen’s dishwasher, fridge and cupboards
[2].

ARMAR-III’s software distinguishes scenarios, tasks and skills. At the lowest level skills
combine perception and motion control to perform actions such as grasping of tableware
based on Visual Servoing. Tasks sequentially apply multiple skills to achieve a more
complex goal; e.g. bringing an object from the fridge to the robot’s operator by opening
the fridge, grasping the object and handing it over to the robot’s operator. At the
highest level of abstraction scenarios can receive speech commands and use tasks to
perform the requested operations. The demonstration of new tasks and skills often

1



results in the creation of a new scenario which combines existing tasks with new ones
to present them in a meaningful context. Creating and maintaining scenarios requires a
significant amount of work – a lot of which could be avoided because each scenario needs
to solve the same problems again.

1.2 Context and Goal of this Thesis

In this thesis I present a system for simplifying the creation and maintenance of scenarios
using symbolic task planning software which communicates with an Central Executive
Agent controlling the robot’s perception and motion. The planning system dynami-
cally generates instructions leading the robot to reach a goal supplied by an operator
through speech. The combination of executive and planning system replace hardcoded
scenarios for the purpose of demonstrations. The robot provides the planning system
with symbolic abstractions of its sensory input. And it translates the planning system’s
instructions into motion primitives to be executed in the physical world. The concept
of Object-Action Complexes from the PACO+ project serves as the basis for communi-
cating knowledge, experience and instructions between the system’s components. The
system allows ARMAR-III’s existing tasks and skills to be used for evaluation purposes.

2



2 State of the Art

2.1 Planning in Artificial Intelligence

A planning problem consists of an initial state, a set of actions an agent can peform and
a set of goal conditions to be satisfied. Plans are sequences of actions transforming the
initial state into a state which satisfies the set of goal conditions. In this context state
often refers to something absolute but can also be understood as the agent’s knowledge of
the world. The descriptions of states, actions and goal conditions require a representation
of objects and properties that exist in the world. Automated planners can then generate
a plan when provided with a planning problem.

STRIPS [3] is an automated planner developed by Fikes and Nilsson in 1971. It considers
a closed world in which the world state is represented as a set of facts which are always
either true or false. A world state database contains all true facts or ground atoms.
Actions can only be executed in states where their preconditions – a set of facts –
evaluate to true. The effect of applying an action is expressed as additions to the
world state database and deletions from it. Goal conditions can be expressed as a
set of facts to be satisfied. When provided with a planning problem in this format
STRIPS searches a sequence of actions that leads to a state satisfying the goal conditions.
The STRIPS planning problem definition became the basis of the widely used Planning
Domain Definition Language (PDDL) [4] for describing planning problems and many
planners require input in a derivative form of STRIPS.

The closed world assumption of STRIPS is not realistic for a robot like ARMAR-III be-
cause it does not know the entire world’s state but can only ever perceive a small subset
thereof. Furthermore exploratory actions may have nondeterministic effects which can-
not be expressed using STRIPS. There is no differentiation between knowledge and world
state in STRIPS. So discrepancies between the robot’s believe of the world’s state based
on its perception and the world’s actual state cannot be modelled using STRIPS. To
solve these shortcomings open world planners have been created which can be separated
into three categories:

• Conformant planners deal with incomplete world states but can only use deter-
ministic actions.

• Contingent planners understand incomplete world states and nondeterministic
sensing or exploratory actions.

• Planning under uncertainty usually deals with probabilistic representations of the
world state, modeling uncertainty in perception and execution.

3



2.1.1 PKS: Planning with Knowledge and Sensing

PKS developed by Petrick and Bacchus ([5], [6], [7]) falls into the second category of
contingent planners. It uses a restricted modal logic of knowledge to model actions
as changes to the planner’s knowledge state, rather than the world state. While PKS
models incomplete knowledge it assumes that all planner knowledge is correct and does
not model the probability of its correctness. PKS uses a set of databases to store different
kinds of knowledge which can be translated to formulas of modal logic representing the
planner’s knowledge state. Actions indirectly modify the knowledge state through direct
modifications of the databases. These are the databases used in PKS:

• Kf contains positive and negative facts and is similar to the state representation
in STRIPS. Negative facts need to be specified explicitly because an open world
allows facts to be unknown, meaning neither false nor true.

• Kw can be used to express facts which will be known at execution time but are
not known at plan time. Kw allows modelling sensing actions like touch(x) which
result in either wet(x) or dry(x) at execution time but are only known to result in
either one of them at plan time.

• Kv is a specialised version of Kw for storing information about functions returning
constants rather than facts resulting in truth values. So it allows the creation of
sensing actions for sensors that return values rather than truth values.

• Kx contains information about facts that exclude each other. Every fact in a set
of facts in Kx can only be true if all other facts in the same set are false. So if the
planner comes to know one of the facts it automatically knows that all the other
facts in the same set are false.

• LCW stores local closed world information meaning it allows the robot to assume
a fact to be false when it is not contained in Kf . For example if the robot knows all
the objects in the fridge then inFridge(x) ∈ LCW , so if inFridge(orangeJuice)
is unknown, it must in fact be false.

PKS actions have a set of parameters and just like STRIPS actions they consist of precon-
ditions and effects. The preconditions are a conjunction of queries against the planner’s
knowledge state which must evaluate to true. Effects add or delete items from any of
the PKS databases. Effects can be defined conditionally so that they only take place if
a query against the planner’s knowledge evaluates to true. Domain specific update rules
which are defined just like effects can also modify knowledge. These rules can be used
to specify state invariant knowledge as well as state independent conclusions using con-
ditional effects. The operator K denotes that something is known, so an example for a
domain specific update rule expressing that objects which break when they are dropped
are fragile could be written as K(dropped(x)) ∧K(broken(x))⇒ add(Kf , fragile(x)).

4



PKS itself does not deal with unexpected situations after the execution of actions. A plan
execution monitor wraps the PKS library for generating plans and compares expectations
to actual results continuously. If necessary the plan execution monitor will instruct PKS
to generate a new plan starting with the current state as the initial state for the new
plan.

2.2 State of the Art in Robotics

2.2.1 Task Planning on the Humanoid Robot HRP2

In [8] Okada et al. describe how they have constructed a three layered architecture
integrating a task level planner with scenario recognition (further described by Tokutsu
et al. in [9]) and a low-level control layer combined with the robot’s vision system. In
their work the scenario recognition system is responsible for using visual cues to detect
a goal for the planner. Their task planner uses an action and state description similar to
that of STRIPS and assumes a closed world. The actual plans are generated using partial
order planning [10] which is a planning mechanism avoiding the generation of redundant
plans which are permutations of themselves. The vision system generates symbolic
representations of world state for the planning system prior to plan execution. The
action selected by the task planner is sent to the visual behaviour control system. There
the action primitive is disassembled and the vision system performs object recognition
as necessary. The behaviour control system then generates a movement to perform the
action. After completing the action the vision system is used to verify the correctness of
the action’s execution. The authors claim their system is very robust and almost never
fails however there is no mention of error recovery after failed actions. The closed world
planner requires all actions to work exactly as expected.

In [11] Haneda et al. further explain how they use a symbolic task planning system
in combination with motion planning to rearrange objects in an interactive dynamics
simulator. For this work they used the FF Planning System [12], a forward planning
closed world planner. Just like before the motion planning system is used to plan the
details of individual movements while the task planner is used to assemble a set of actions
which need to be further refined.

2.2.2 Hierarchical Planning with TREX on the Mobile Manipulation Platform PR2

Another approach for integrating high-level planning with low-level motion control has
been presented by McGann et al. in [13]. They propose an architecture in which a high-
level planning system commands an executive which delegates its work to appropriate
subsystems for supplied tasks. Their executive provides coherent access to subsystems
and is responsible for recovering in the event of failure. It ensures safety constraints
and manages access to shared resources. The TREX system providing this executive

5



uses the EUROPA1 temporal planning library to generate its plans. TREX understands
hierarchical action definitions allowing more granular details to be planned as well. Parts
of the action domain can be modelled explicitly as state machines if that is beneficial
over actions automatically generated through planning. TREX represents world state
as state variables (complex compound values, not just primitives) which change over the
course of a timeline. The planning system fills up future values in the timelines which
serve as instructions for execution once the respective point in time is reached. Reactors
allow a plan to be synchronised with recent perception so the planner can adjust its plan.

2.3 ICE in Robotics Projects

The Internet Communications Engine (ICE) [14], [15] is a middleware layer which has
been used to build component systems for robotics projects including JAST [16] and Orca
[17]. Brooks et al. describe their reasons for choosing ICE over alternative middleware
solutions like CORBA in [18]. CORBA in particular is considered large, complicated
and difficult to use, while ICE is described as more consistent and easier to use, yet
providing all necessary features. Other reasons for choosing ICE include the wide variety
of supported hardware platforms, its open source license and its suitability for all layers
of their system. ICE interfaces are defined using its own interface definition language
called Slice2. Slice can be mapped into many languages including C++, Java, Python,
PHP and Ruby enabling interoperability of components programmed in any of these
languages. ICE also provides the means to easily manage and maintain a distributed
system where components are spread over multiple machines.

1http://opensource.arc.nasa.gov/page/nosa-software-agreement
2http://zeroc.com/doc/Ice-3.4.1-IceTouch/manual/Slice.html

6



3 Integration Concept with Object-Action Complexes

3.1 OACs in PACO+

Resulting from the PACO+ project Krüger et al. proposed a definition of Object-Action
complexes [19]. Their summary states:

PACO-PLUS project views Object-Action complexes as a dynamic (learn-
able, refinable) and grounded representation that binds objects, actions and
attributes associated with an agent in a strong, causal way. They can carry
low-level (sensorimotor) as well as high-level (symbolic) information and can
thereby be used to join the perception-action space of an agent with its
planning-reasoning space. In addtion, they enforce the storage of relevant
information for further bootstrapping in episodic memory.

Their work presents a formal definition as well as a number of examples demonstrating
the application of Object-Action complexes. One of the examples uses the PKS planning
system which is also the basis for the work described in this thesis. According to [19] an
Object-Action complex (OAC) is a triplet (id;T ;M) where id represents a unique OAC
identifier, T is a prediction function of the expected change to the world through the
OAC and M is a statistical measure of the OAC’s sucess in the past.

The prediction funcion T encodes the system’s belief of how the world will change.
This definition takes into account that any learned prediction is naturally the subjective
understanding of the observer. It is explicitly not an absolute truth which might be
available in simulation. Even though T is defined as T : S → S where S is the global
attribute space, in most cases only a small subspace is relevant to a particular OAC. To
simplify the situation one defines an initial attribute space A and a predicted attribute
space Â and restricts T to these.

The paper goes on to define system levels for the exeuction of OACs in hierarchical OAC
systems. System levels restrict OACs to execution within only one layer of the hierarchy.
So even though the system described in this thesis deals with hierarchical OACs it only
uses a single system level and emulates hierarchy within that level to allow the reuse of
OACs on all hierarchy levels.

3.2 Applying the OAC Concept in Software

One of the goals of OACs is to unify the representation of objects, actions and their
combined instantiations across all layers of a cognitive system. As such it is necessary
to build a system in which OACs can be executed on the lowest level as well as reasoned
about on the highest. The SPOAC (Symbolic Planning Integration through Object-
Action Complexes) library described in this thesis implements such a system.

7



The high-level reasoning system used in this thesis is a symbolic task planner. The
planner requires access to perception to reason about world state. The representation
for perception used in the context of OACs is that of objects with associated features or
properties. Since the planning system works on a symbolic level some form of abstraction
needs to happen between raw sensory input and the planner. Hence a processing system
transforming raw sensory data into objects with symbolic state representation needs to
be part of any system using OACs for both reasoning as well as low-level execution.
Here the collection of known objects is considered the short-term memory of the robot
because it contains recently perceived information on objects relevant to the task it is
currently executing.

For the execution of OACs selected by the planner, a system which instantiates and
configures motion control primitives is required. The system must also be able to handle
feedback loops from perception to motion control so it has to have access to both the
perception as well as the execution layer. This system is called an executive and is the
central authority on the robot, which manages the other parts described. It receives
high-level instructions from the planner. Sometimes the executive is called a central
executive agent (CEA). The executive can ignore the planning system and make its own
decisions which is useful for implementing intuitive behaviours similar to instincts.

Information about known OACs must be stored for access by the executive and the
planning system. A learning system for OACs may create new OACs based on experience
of the executive. The storage container for OACs is called long-term memory in this
thesis because it provides the executive and planner with learned kownledge of its own
abilities.

3.2.1 OACs in PKS

For PKS an Object-Action complex consists of a name, a list of parameters, preconditions
and expected effects. Unfortunately PKS typically uses actions and instantiated actions
to refer to OACs which is the more common terminology in planning systems. So
attention needs to be paid to terminology in the context of PKS and OACs. Differing
from the definition of OACs described in subsection 3.1 PKS models change to a robot’s
knowledge rather than change to the actual world state. An OAC is instantiated with
parameters which are used in the abstract descriptions of precondition and effects. The
parameters are constants and typically represent an object. Properties of objects are
accessible as predicates and functions of arbitrary arity defined over the object identifiers.

3.2.2 Action and Object Representations

Perception starts at raw sensory information which needs to be further processed in
order to enable reasoning on a more abstract level. The processing step consists of
the extraction of features on one side and the grouping of features and analyzing their

8



relationships on the other side. Groups of extracted features and abstracted knowledge
are the basis for objects. In combination with actions their actual object behaviours
emerge. The actions define what information structure they require of an object. If an
object is understood this way, it makes sense for an object to consist of any number of
features and relationships collected in an arbitrary structure rather than a set of features
in a fixed predefined structure.

If an object has no strictly defined set of properties and no strict structure it becomes
possible to understand the processing of signals as continuous transformation of singals
into objects through a chain of processors. The SPOAC library calls these processors
perception handlers. Exposing objects to higher level processes becomes a simple task in
this architecture because an export processor can be attached to the chain. The export
processor can even filter or transform the information contained in the object before
exposing it to another system if necessary.

In the SPOAC library, an action is essentially any piece of code with a set of parame-
ters which transforms the real world when executed. An action is parameterised with
objects from short-term memory and arbitrary further configuration data retrieved from
long-term memory. Configuration in long-term memory can either apply to all object
parameterisations or to any chosen subset of object parameterisations. For example a
trajectory for looking around a workspace might be fine tuned by a developer, but will
probably not differ based on the workspace. On the other hand an action like grasping
might require configuration values very specific to each object like orientation and offsets
for successful grasps. These values are not directly perceived but typically either inferred
from pervious experience or when no learning mechanisms are available hardcoded by a
developer.

Now an OAC can be understood as a reference to an action and a sequence of objects
used to parameterise the action. Long-term memory provides the means to look up
the action and its necessary configuration for a given OAC name and a corresponding
sequence of objects. As such the OAC comes from long-term memory and needs to be
instantiated with information from short-term memory in the form of objects to yield
an executable action. At the same time reasoning about OACs needs to be possible
in the planning system. Consequently, the OAC stored in long-term memory must
additionally contain a definition of the requirements it imposes on parameter objects
and the expected effects of executing the resulting action. Separating this information
from the information required to instantiate an OAC has multiple advantages. The
separation makes it possible to execute OACs that the system has not yet understood on
an abstract level and cannot meaningfully reason about. This is particularly important
for learning systems like the rule learning system described in [20] and [21]. which can
learn preconditions and effects of OACs from gathered experience while executing OACs.
Without exploration, meaning the execution of OACs without preconditions and known
effects, it would be impossible to draw such conclusions. The separation of information
necessary for execution from information required for reasoning also makes it possible to
reason about OACs that might not yet be executable for technical reasons or to simply

9



test extensions to a high-level system using OACs for which there are no corresponding
features in the execution code yet.

According to Krüger et al. [19] OACs contain a statistical measure to store information
on the reliability of the OAC’s execution. SPOAC does not yet include such a measure
in its OACs. One major problem with implementing a statistical measure of reliability is
that success needs to be measurable. The lack of sensors and sufficient image processing
on ARMAR-III often makes it impossible to tell if the expected state was reached. Apart
from that it is questionnable whether this measure should really be contained within the
OAC itself. It would make learning processes that consider multiple OACs more com-
plex if there is only statistical information about individual OACs. Instead, executed
OACs and their results should be recorded in what could be called episodic memory.
This addition to long-term memory would enable learning mechanisms to draw conclu-
sions about reliability of individual OACs, sequences of OACs and interaction between
OACs. Currently no learning mechanism is integrated in SPOAC but experiments with
a combination of PKS and RULESYS have been performed on ARMAR-III.

3.2.3 An Executive for Object-Action Complexes

An executive for OACs does not need to differ significantly from other executives. Its
implementation however is greatly simplified if the same concept — OACs — is used
consitently across all involved components. OACs provide a consitent method for access-
ing short-term memory information in actions. OACs are a concept that cuts through
all layers, applying to the most abstract high-level components as well as to low-level
components dealing directly with sensors and actuators.

The executive implemented for this thesis makes use of three principal subsystems:

• the perception & processing subsystem dealing with short-term memory,

• the long-term memory subsystem providing knowledge about OACs,

• the activity control subsystem which is responsible for providing the executive with
proposals on what it should do.

The perception & processing subsystem is responsible for populating short-term memory
with objects and keeping their data synchronised with the robot’s perception. Here an
object simply refers to a group of related sensory information and extracted features
as well as relationships to other objects. The system generating the data consists of a
set of chained processors called perception handlers. Some of them extract information
directly from the robot’s sensors or low-level systems providing an abstraction of them
while other perception handlers further process the data made available by the handlers
of the former kind. An example would be a perception handler which uses the robot’s
vision library. It would create objects in short-term memory for every object the library
recognises. Another perception handler would then analyse the relative positions of

10



all objects in short-term memory. The analysis would result in relationship properties
like onTopOf and under to be stored in the same objects in short-term memory. All
other systems can now reason about the objects using the extended properties instead of
dealing with the details of extracting this abstract information from raw sensory data.

The long-term memory subsystem can be understood as a database for OACs. It has
to be able to provide the planning system with a complete definition of the robot’s
capabilities and the executive with information on how to instantiate and execute an
OAC. OAC learning mechanisms need to have access to the long-term memory to add
new OACs and update existing ones.

The activity control subsystem provides the executive with instructions. While the ex-
ecutive decides what will really be exeucted on the robot, it needs to receive instructions
that it can choose from. For this purpose the executive has a queue of OACs to be ex-
ecuted in order. This queue is accessible to activity controllers which can enqueue new
OACs, remove OACs or inject OACs in the beginning for immediate execution. Activ-
ity controllers are notified about changes to execution state, for example the beginning
or end of an OAC’s execution. When the executive’s OAC queue is empty it sends a
message to all activity controllers requesting new instructions.

The planning system is integrated with the executive through an activity controller.
The activity controller exposes the messages it receives through a network interface the
planner is connected to. After successful execution of an OAC, the planner sends the
next OAC from its plan to the activity controller. The activity controller then enqueues
this OAC. At the same time a special perception handler provides the planner with
updates on the state of short-term memory so it can react to unexpected situations and
verify the success of its plan. If an unexpected situation is encountered and the plan
execution monitor decides the plan needs to be changed, the planner can instruct the
activity controller to stop the current OAC and enqueue a different one.

Activity controllers can also be used to implement instinctive behaviour. Such a con-
troller would inject a new OAC in response to a perception handler perceiving a particular
piece of information. Other possible uses for activity controllers include optimisation of
OAC sequences based on past experience or spatial reasoning which the planner did not
perform.

To execute an OAC, it is instantiated with objects from short-term memory and data
from long-term memory. The resulting instance then runs inside the ARMAR control
system, embedded in an ARMAR scenario. It is able to make use of preexisting skills
and tasks allowing a simplified transition from the previous system to SPOAC. Because
skills and tasks also handle perception short-term memory updates through perception
handlers can be temporarily disabled or slowed down to improve the main ARMAR-III
control loop speed.

11





4 Implementation of the OAC-based Integration Concept

4.1 Software Architecture

4.1.1 Conceptual View

LTM

symbolic OAC 
representation

low-level OACs with 
execution parameters

ARMAR Software

STM / Working 
Memory executable action

Central Executive Agent

Plan Execution Monitor

PKS

low-level percepts

Skill
low-level 

action

vi
si

o
n

h
ap

ti
cs

p
ro

p
ri

o
ce

p
ti

o
n

o
th

e
r.

..

m
o

to
r 

co
m

m
an

d
s

Ice

Low Level

Mid Level

High Level

Figure 1: Component overview within the cognitive central architecture developed in
PACO-PLUS

The system architecture depicted in Figure 1 follows directly from the solution concepts
described in the previous section. Embedded in the cognitive architecture developed in
PACO-PLUS consisting of three layers, the components are:

• the high-level symbolic planning system PKS,

• mid-level and high-level long-term memory storing OACs containing symbolic and
low-level information,

• mid-level short-term memory storing object representations,

• the mid-level Central Executive Agent responsible for coordination,

• low-level perception processing,

• low-level skills and actions.

13



These components are connected using the ICE middleware. Short-term memory and
the Central Exectutive Agent run within a single process to provide legacy skills and
tasks with direct access to perception (marked in red in Figure 1).

4.1.2 Technology Used in the Implementation

The SPOAC library was developed in C++ using object oriented programming and test
driven development. The employed build system CMake [22] comes with a test runner
called CTest which is used to run test programmes. The tests themselves make use of
the Boost Unit Test Framework [23]. API documentation is generated from source code
comments using Doxygen [24].

An object oriented design pattern that has been applied to all components of the system
is dependency injection [25]. Dependency Injection is meant to decouple dependent
components of a system. The problem of coupled components is easily illustrated with
an example. Assume that class A delegates some of its work to another class B. The
naive solution is to create an instance of B in A’s constructor. But if you now wish to
replace B with another class C – for example a dummy class to test the behaviour of
A in isolation from B – an adjustment of the instantiation code in A’s constructor is
required. To avoid this modification you need to decouple A from B. This can be done
by separating the dependency resolution and instantiation from the implementation of
A’s behaviour. Instead of creating a new instance, A should receive an instance of B in
its constructor or through a setter method. The instance it receives needs to be created
outside of A. Now A can also receive an instance of C if it conforms to the same interface.
To facilitate the use of dependency injection a lightweight dependency injection container
called DependencyManager is a part of the SPOAC library. It takes care of resolving
the dependencies of classes and creating the objects which are required to instantiate a
class.

SPOAC’s prefered format for encoding various objects for storage in files or serialisation
is the JavaScript Object Notation (JSON) originating from JavaScript/ECMAScript [26].
JSON is a lightweight data-interchange format claimed to be easy to read and write for
humans. This makes it suitable for OACs which are hand-crafted rather than generated
through learning mechanisms and for the manual creation of scenario definitions for the
demonstration of a particular set of OACs. JSON’s minimalistic syntax makes it easy
for machines to parse and generate JSON documents. Apart from the primitive types
string, number, bool and null JSON knows the complex datatypes array and object. An
array is an ordered list of values while an object is an unordered mapping of keys to
values [27].

14



4.2 PKS: Planning with Knowledge and Sensing

PKS consits of two main parts: the library for planning itself and an application called
Plan Execution Monitor which provides different ways of interfacing with the planning
subsystem. The Plan Execution Monitor provides both a Command Line Interface (CLI)
as well as network access through ICE. Apart from controlling the planner based on input
received through the network or command line interfaces it also takes care of monitoring
the consistency of the plan’s expectations with percepted results. If a mismatch is found
it can decide to generate a new plan leading to the goal from the current situation. There
are several policies available for identifying matches of predicted and observed state:

• equal : The states only match if they are exactly identical.

• subset-observed : The states match if the observed state is a subset of the predicted
state.

• subset-predicted : The states match if the predicated state is a subset of the observed
state.

• preconds-true: The states match as long as the next planned action’s preconditions
are satisfied by the observed state.

• any-equal : Reports states as matching if any of the first four methods result in a
match.

• any-unequal : Reports a state mismatch if any of the first four methods result in a
match.

• always-equal : Always reports states as equal.

• always-unequal : Always reports states as unequal.

The default behaviour is preconds-true with which replanning only takes place once an
action’s preconditions are no longer satisfied.

4.3 Short-Term Memory

Short-term memory is understood as a model of the real world in SPOAC. Short-term
memory contains a set of objects corresponding to objects in the real world. It is pop-
ulated by PerceptionHandlers which add and modify objects. Figure 2 depicts the class
model of short-term memory and the perception subsystem with three examples of Per-
ceptionHandlers. Information decay is made possible through timestamping modifica-
tions to objects.

15



VariantMap

Object

ObjectSet STM

ObjectVector

*

1

1*

«interface»
PerceptionHandler

*1

IVTPerceptor SelfPerceptorRelativePositionPerceptor

Figure 2: UML class diagram of short-term memory

An individual object stores key-value pairs. The values can be of a variety of types
including references to other objects in short-term memory. This allows expressing com-
plex situations like objects composed of other objects which can either be seen as a
whole or as individual parts. An example of an object in short-term memory is shown
in Listing 1.

Listing 1: JSON encoded object representation of a green cup

{

"id": "cup23",

"ivt.name": "cup",

"ivt.color": "green",

"ivt.world_point.x": 23.5,

"ivt.world_point.y": 42.7,

"ivt.world_point.z": 17.3,

"isObject ": true ,

"objLocation ": {" sideboard ": true},

"onSurface ": true

}

4.4 Long-Term Memory

The long-term memory service is essentially a database for OACs and scenario definitions.
It can extract action definitions for the planner from the OACs as well as selecting an
action configuration for the execution of an OAC when provided with short-term memory
object information.

Both OACs and scenarios are encoded and stored using the JavaScript Object Notation
(JSON). Presently JSON objects are stored in the file system, one file per OAC or
scenario. If this ever became a performance bottleneck or if further processing of the
OACs became necessary in the future the documents could be stored in a variety of
databases available for storing arbitrary JSON documents.

16



Listing 2: JSON encoded OAC in Long-Term Memory

{

"name": "grasp",

"params ": ["x", "l", "h"],

"match ":[{"x": {"ivt.name": "spruehflasche "},

"action ": "BoxGrasp" },

{"x": {"ivt.name": "burti"},

"action ": "BoxGrasp" }],

"action ": "Grasp",

"precondition ": "

K(isObject (?x)) &

K(isLocation (?l)) &

...",

"effect ": "

add(Kf, inHand (?x, ?h)),

del(Kf, handEmpty (?h)),

..."

}

The example OAC in Listing 2 has a match section. This section allows to define a
set of rules that the OAC’s object parameters must match for the specified action or
configuration values to apply. The main action section will be used if none of the rules
apply. This feature is inspired by the pattern matching mechanisms common in func-
tional programming languages. Functional programming languages use the mechanism
to partially define functions for parameters matching the pattern [28] [29]. A set of these
partial definitions makes up the entire function. The matching section can be used to
define patterns for any combination of the parameter objects and any number of their
properties. For more complicated patterns expressions are possible as well. The robot’s
state is available through the special object name self. A few examples can be found
in Listing 3.

17



Listing 3: JSON encoded OAC in Long-Term Memory

Placing items into appliances , special code for dishwashers

"params ": ["what", "into"],

"match ":[{" into": {" appliance ": "dishwasher "},

"action ": "PlaceIntoDishwasher" }],

"action ": "PutInto",

Run , but walk slowly when the battery is nearly empty

"params ": [" destination "],

"match ":[{" self": {" battery ": {"cmp": "<", "val": 10}},

"action ": "Walk" }],

"action ": "Run",

The scenarios which are also stored as JSON documents in long-term memory contain
a set of action controller names and a set of perception handlers to set up the Central
Executive Agent for a scenario. Additionally scenarios contain a set of predicates and
functions to be exposed to the planning system. This is necessary because there is no
mechanism for learning the importance of different object properties integrated into the
system yet. The planner would be overwhelmed if all raw data was given to it. The
scenario allows limiting the number of OACs available for execution and can contain
predefined goals. These goals are used when the language recognition system on ARMAR
receives a new instruction from the robot’s operator.

18



4.5 Implementation of the Central Executive Agent

«interface»
CEAControl

CEA

ActivityController

1

*

11

SequenceController

IceNetworkController

OAC

-plannedOAC *1

«interface»
Action

1

-running

0..1 ActionStateMachine

ActionState

1

-current 0..1

ActionStateFinal

SuperAction-subOAC

* 1

LookAround

FindHandle

GraspHandle

PullHandle

Figure 3: UML class diagram of the executive

ExecutionOAC foo

Super OAC

OAC bar

ExecutionSuper OAC

Sub OAC 1

Sub OAC 2

OAC bar

ExecutionSub OAC 1

Sub OAC 2

OAC bar

ExecutionSub OAC 2

OAC bar

Figure 4: The Central Executive
Agent’s OAC queue

The CEA is embedded in the robot’s main control
loop. So it is important that activities that might
take a longer time are handled asynchronously.
At present the majority of activity controllers and
perception handlers operate synchronously because
the current hardware available on ARMAR-III does
not allow for truly parallel execution of high-level
software. The activity controllers and perception
handlers which provide the network interface using
ICE however work asynchronously. So the CEA
makes use of events, notifying activity controllers
and perception handlers when necessary. These
can then either block the process and perform their
work or send off an asynchronous request. Either
way the reply is sent as a separate message to the
CEA because the events do not return any values.

Another requirement for the CEA was the reuse of
existing skills and tasks on executing OACs. This
was easily achieved by allowing actions to run ar-
bitrary code. They can then simply instantiate the
existing skills or tasks and delegate the work to
them. So in these cases an action configures a skill
or task depending on which parameter objects it
was passed and which configuration data it received
from the OAC definition in long-term memory.

The OAC definitions from long-term memory do
not provide any obvious mechanism for defining hierarchical OACs, OACs that delegate

19



their work to a sequence of other OACs. Instead OACs can reference the SuperOAC

action and use the configuration data from long-term memory to select a sequence of
sub-OACs to be executed in order. Any other action is also able to delegate work to an
existing OAC. This is realised through a yield method of the CEA. An action can yield
to an OAC which will then be injected in front of the OAC queue and started by the
next run of the control loop. The previously running action and its corresponding OAC
will continue their execution after the sub-OAC is finished. This means that the CEA
really only deals with a linear queue of OACs but at the same time OACs can have a
complex hierarchy.

Activity controllers are notified about OACs which are about to be started. This allows
them to manipulate the contents of the queue prior to actual execution. Examples for
such activity controllers would be ones replacing OACs based on past experience or ones
that inject OACs to improve reliability based on spatial reasoning. These controllers
can do exactly the same for OACs which were started as sub-OACs by a super OAC
because the CEA does not itself differentiate between the two as explained in the previous
paragraph.

4.6 Component Interfaces

Each component defines multiple interfaces for communication. The first interface al-
lows other components to request information on the component’s current state. The
names of these interfaces are suffixed with Info. The second interface is used to receive
information from other components. To allow listeners to intercept such communication
and react to it, all communications of the second kind are broadcast rather than be-
ing directly transmitted to a particular component. These interfaces are suffixed with
Topic indicating their use as a broadcast channel. The third and optional interface is
suffixed with InfoTopic and is used to broadcast internal state transitions that might be
of interest to other components.

The separation of these communication mechanisms allows other processes to query
components for their current state on start up and then follow all further transmissions
to react to them. A graphical user interface (GUI) can serve as an example of such a
process. When the user launches the GUI the Info interfaces are used to retrieve the
current state of the system to be displayed. The GUI can now listen to all broadcast
messages to update the user interface when changes occur.

The interfaces are split into 3 different modules: SymbolicExecution, Planning and
LTM. The idea is to make parts of the system independent, so one can use the SPOAC
library without the need to use the Planning module for example.

In the following sections C++ notation is used to describe the details of each interface,
the methods it defines and their paramters and return values.

20



4.6.1 SymbolicExecution::CEAControllerTopic

The Central Executive Agent listens for instructions that other components broadcast
to this topic.

• startAction Parameters: Action a
Appends the given OAC into the execution queue on the robot.

• injectAction Parameters: Action a
Injects an action in front of the execution queue for immediate execution.

• stopAction Parameters: Action a
Tells the Central Executive Agent to abort the given OAC’s execution.

• taskComplete

Informs the Central Executive Agent of the completion of a task so that it can
notify the user.

• pause

Instructs the Central Executive Agent to pause execution of the current OAC.

• unpause

Allows the Central Executive Agent to continue executing the current OAC after
it was paused using the previously mentioned request.

• reset

Instructs the Central Executive Agent to abort the execution of the current OAC
and clear its short term memory to restart the scenario. This is mostly useful for
sending a reset instruction from a GUI during debugging.

4.6.2 SymbolicExecution::CEAInfoTopic

The Central Executive Agent uses this topic to broadcast messages when its state
changes.

• actionStarting Parameters: Action a
After the Central Executive Agent has selected the next OAC from its queue for
execution this notification is sent out to give ActivityContollers a chance to prevent
its execution in order to inject a different OAC.

• actionStarted Parameters: Action a
If an OAC’s execution was not cancelled after sending the actionStarting mes-
sage, this notification is sent out to signal the beginning of its actual execution.

• actionFinished Parameters: Action a
This notification is sent after an OAC has finished execution.

21



• actionStopped Parameters: Action a
When an OAC has been stopped and cancelled during its execution this message
is broadcast.

• taskCompleted

After the completion of a task has been signalled through a message to the CEA-

ControllerTopic this message is sent to notify all listeners on this channel.

• paused

The message is sent when execution of the current OAC has been paused.

• unpaused

Signals the continuation of OAC execution after a pause.

• resetted

When the robot is reset this message is broadcast to allow all listeners to reset
their state as well.

4.6.3 SymbolicExecution::CEAInfo

The Central Executive Agent’s state is accessible through this interface.

• getCurrentAction Returns: Action
This query returns the OAC currently being executed by the CEA.

• isPaused Returns: Boolean
This accessor returns whether the CEA is currently paused.

4.6.4 Planning::PlanControllerTopic

This interface is used to configure the planner and update its knowledge of the world’s
state.

• setSymbolDefinitions Parameters: SymbolDefinition symbols
Overwrites the current planner symbol definitions with the new given one. A
symbol definition consists of predicate definitions, function definitions, type defini-
tions and constant definitions. Constants represent object identities in short term
memory.

• setActionDefinitions Parameters: ActionDefinitionList actions
Overwrites the current planner action definitions.

• setGoal Parameters: Goal g
Sets a goal for the planner in the form of a boolean PKS expression.

• updateState Parameters: StateUpdate update

22



After changes to information in short term memory this method is used to transmit
the differences in knowledge so the planner can react to perception.

• actionFinished Parameters: Action a
Informs the planner when an action has been finished.

• startPlan

Instructs the planner to start planning toward the specified goal.

• stopPlan

Resets the planner to start over when instructed to start planning.

• resetState

When short term memory is reinitialised this is used to reset the planner’s knowl-
edge to an empty state as well.

4.6.5 Planning::PlannerInfo

The planner’s current state is accessible through this interface.

• getCurrentAction Returns: Action
Returns the action the planner believes should be executed next.

• getActionDefinitions Returns: ActionDefinitionList
Returns the complete action definitions previously set through the PlanController-
Topic.

• getSymbols Returns: SymbolDefinition
Returns the symbol defintions previously set through the PlanControllerTopic.

• getGoal Returns: Goal
Retrieves the goal expression specified in the previous call to setGoal in the Plan-
ControllerTopic.

• getNextActions Parameters: int max Returns: ActionList
Returns at most max elements of the sequence of currently planned actions.

4.6.6 LTM::LTM

This interface is used to access the information stored in the long-term memory database.
Since its only purpose is to provide information at this point it is not meant for broad-
casting. Other components can connect to the long-term memory directly to request
information.

• getScenario Parameters: String scenario Returns: Scenario
Retrieves a scenario definition of the given name.

23



• getAction Parameters: String oac Returns: ActionDefinition
Retrieves a planning action definition for the OAC of the given name.

• getActionConfig Parameters: OAC oacInstance Returns: ActionConfig
Retrieves a detailed configuration for the execution of an OAC by the CEA. The
oacInstance contains the actual short term memory object data.

24



5 Application of SPOAC to ARMAR-III

The goal of applying SPOAC to ARMAR-III is to run an experiment in which ARMAR-III
is located in the kitchen of our lab and is given the task to serve a carton of apple juice
and a cup. The apple juice is located in the fridge and the blue cup is standing on the
stove. In order to achieve its goal ARMAR-III must open and close the fridge, pick up
the apple juice and the cup as well as carrying them to the sideboard where they shall
be placed for consumption.

Opening and closing the fridge poses several physical problems for ARMAR-III. The
fridge’s door opens toward the right so the right hand is used to grasp the handle and
pull. However the fridge is located next to a wall so ARMAR-III cannot move to the
right and its phyiscal properties prohibit it from fully opening the door with the right
hand without moving to the side. So in order to finish opening the door ARMAR-III
must use its left hand to push the door completely open. Consequently ARMAR-III
cannot keep an object in one hand while opening the door with the other. However,
ARMAR-III able to pass an object from one hand to the other. So the planner will have
to instruct the robot to pass the object in its left hand to the right hand when opening
a door with an object in its hand. Similar restrictions apply to removing an object from
the fridge and closing it. Both actions can only be performed with the right arm. So if
the fridge has to be closed after removing an object from it, the robot needs to pass the
object to the other hand first.

Based on the results of the integration of PKS at the University of Southern Denmark in
the PACO+ project [30] and the described limitations, the domain definition explained
in this chapter was created. The follow sections describe the necessary properties and
OACs, their meaning and implementation as well as constraints and translation to PKS
symbols.

5.1 Properties

This section contains a list of all properties which are exposed to the planning system.
This does not include properties of lower abstraction, such as coordinates for objects
relative to the robot or exact values of orientation. Instead these properties either define
the PKS type of an object which is used to limit the scope of PKS action definitions or
abstract relative knowledge like object A is onTopOf object B.

isObject

PerceptionHandler IVTPerceptor

PKS Predicate isObject(?const)

25



The ambiguously named property isObject actually describes if an object can be
grasped. Consequenly it is not true for all objects in short-term memory. The prop-
erty’s value is boolean and thus represented as a predicate of arity 1 in PKS. Since only
objects recognisable through the IVT vision library3 were considered for grasping in the
SPOAC experiments the only PerceptionHandler setting this flag is the IVTPerceptor.
For example cups and boxes have isObject set, while it is false for locations like the
sideboard or the stove.

isHand

PerceptionHandler SelfPerceptor

PKS Predicate isHand(?obj)

Because PKS’ new type system is not yet used this property is a boolean flag which is
only set on the two short-term memory objects representing the robot’s own hands. The
flag is set on system startup by the SelfPerceptor.

inHand

PerceptionHandler None (assumption only)
PKS Predicate inHand(?obj1, ?hand)

This property contains a link to another object, describing a relationship between two
objects. The PKS representation is a predicate of arity 2. The property is set on a
graspable object which has the isObject property set. The linked object must be a
hand object with the isHand property. Because IVT is not currently able to recognise
objects held in one of ARMAR-III’s hands this property is automatically set in the Grasp
action. ARMAR-III’s hand has no sensors that would allow it to verify the assumption
made after attempting to grasp an object. It is not sufficient to verify that the object
has left its original position since it could have been dropped on the floor, moving it out
of the robot’s field of vision.

handEmpty

PerceptionHandler None (assumption only)
PKS Predicate handEmpty(?hand)

The handEmpty property is set on a hand object and is true when there is no object with

3http://ivt.sourceforge.net/

26



an inHand property linking to this hand. Analogous to the inHand property there is no
way for the robot to actually perceive whether this property is true or false so it is also
an unverifiable assumption made after grasping or placing objects.

isLocation

PerceptionHandler LocationPerceptor

PKS Predicate isLocation(?obj)

Similar to isObject and isHand this property is a replacement for the type system.
Locations identify the different workspaces in between of which ARMAR-III can move
around. The LocationPerceptor enters all known workspaces into short-term memory
as necessary and sets this property on them.

objLocation

PerceptionHandler IVTPerceptor

PKS Predicate objLocation(?obj, ?l)

This relationship property stores the location a graspable object was last seen at. The
IVTPerceptor simply enters a reference to the current location of the robot, when the
object is recognised. So rather than actually locating the object it stores which workspace
the object could last be seen from and would thus likely be the best area to manipulate
the object.

onTopOf

PerceptionHandler RelativePositionPerceptor

PKS Predicate onTopOf(?topObj, ?bottomObj)

The RelativePositionPerceptor further processes information retrieved from IVT
throught the IVTPerceptor. Based on object sizes and positions it estimates which
objects stand on top of each other. This relationship is then stored in the property
called onTopOf. This specifically excludes non-graspable objects, like the stove or the
sideboard.

27



onSurface

PerceptionHandler RelativePositionPerceptor

PKS Predicate onSurface(?obj)

The RelativePositionPerceptor sets the onSurface property for all graspable objects
which are not onTopOf another graspable object. Meaning they stand on a surface such
as the sideboard, the stove or on a board in the fridge.

handedOver

PerceptionHandler None (assumption only)
PKS Predicate handedOver(?obj)

This property solely exists to make the action of handing over an object to a human
being verifiable for PKS. Unfortunately the vision library is not actually able to detect
whether the human being in front of ARMAR-III really grasped the object that was
handed over. So this property is simply assumed to be true after the handing over
action has been executed.

objOpen

PerceptionHandler None (assumption only)
PKS Predicate objOpen(?obj)

The objOpen property currently only refers to the fridge, dishwasher and cupboard
doors. There is no code for detecting the state of these doors yet so all of them are
assumed to be closed in the beginning and opening and closing actions set the objOpen
flag to true. This means that plans will fail when one of these actions is unsuccessful
because the planner will not be made aware of the discrapancy between reality and its
model in short-term memory.

objPartialOpen

PerceptionHandler None (assumption only)
PKS Predicate objPartialOpen(?obj)

The fridge door cannot be opened with a single motion primitive by one hand as has
been explained in the previous section. To allow the robot to pass an object from one

28



hand to the other before it continues opening the door with the other hand, this property
is used to represent the partially open state of the fridge door in the meantime.

robotLocation

PerceptionHandler SelfPerceptor

PKS Function robotLocation()

This property is defined on the robot object itself by the SelfPerceptor. It is updated
when the robot moves to a different workspace. Unlike all previous properties this one
is represented as a function of arity 0 in PKS.

5.2 OACs

close

Parameters l, h
Action CloseDoor

PKS Precondition

K(isLocation (?l)) &

K(isHand (?h)) &

(K(?l = Fridge) & K(?h = rightHand )) &

K(robotLocation = ?l) &

(K(objOpen (?l)) | K(objPartialOpen (?l))) &

K(handEmpty (?h))

PKS Effect

del(Kf, objOpen (?l)),

del(Kf, objPartialOpen (?l))

This OAC uses the CloseDoor action which in turn uses the CloseDoor task already
available on ARMAR-III to close the fridge door with ARMAR-III’s right hand. The
door can also be closed when it is only partially opened. This action requires no further
configuration in the OAC because the majority of necessary data is still hardcoded into
the CloseDoor task and the skills it uses, namely the GraspHandle, MoveArm, Impe-

denceVel, ImpedenceVisionVel and ExecuteTrajectory skills.

29



grasp

Parameters x, l, h
Action x.ivt.name ∈ {sprueflasche, burti} ⇒ BoxGrasp

else Grasp

PKS Precondition

K(isObject (?x)) &

K(isLocation (?l)) &

(K(?l = Sideboard) | K(?l = Stove)) &

K(isHand (?h)) &

K(robotLocation = ?l) &

K(objLocation (?x, ?l)) &

K(handEmpty (?h)) &

K(onSurface (?x)) &

(forallK (?y) !K(onTopOf (?y, ?x)))

PKS Effect

add(Kf, inHand (?x, ?h)),

del(Kf, handEmpty (?h)),

del(Kf, objLocation (?x, ?l)),

del(Kf, onSurface (?x))

The grasp OAC is responsible for grasping objects recognised by IVT. The Grasp action
uses the VisualGrasp skill to grasp an object using visual servoing. No further configu-
ration is used for this skill since it looks up the correct grasp orientation and approach
vector itself. The two objects sprueflasche and burti however are not contained in the
VisualGrasp object database and can thus only be grasped with the BoxGrasp action
which uses the BoxGrasping skill that implements a mechanism for grasping unknown
objects. To accomplish this separation pattern matching on the parameter object is used
to differentiate based on the IVT database name as described in subsection 4.4.

30



grasp-from

Parameters x, l, h
Action Grasp

PKS Precondition

K(isObject (?x)) &

K(isLocation (?l)) &

K(isHand (?h)) &

(K(?l = Sideboard) | K(?l = Stove)) &

K(robotLocation = ?l) &

(existsK (?y) K(onTopOf (?x, ?y))) &

(forallK (?z) !K(onTopOf (?z, ?x))) &

K(objLocation (?x, ?l)) &

K(handEmpty (?h))

PKS Effect

add(Kf, inHand (?x, ?h)),

del(Kf, handEmpty (?h)),

(forallK (?y) (

K(onTopOf (?x, ?y)) =>

del(Kf, onTopOf (?x, ?y))))

The grasp-from OAC uses the Grasp action just like the grasp OAC. However its PKS
precondition and effect differ from grasp in so far as that this OAC is specifically meant
for removing objects which stand on top of other graspable objects.

31



hand-over

Parameters x, l, h
Action HandOverObject

PKS Precondition

K(isObject (?x)) &

K(isLocation (?l)) &

K(isHand (?h)) &

K(?l = DeliverNode) &

K(inHand (?x, ?h)) &

K(robotLocation = ?l)

PKS Effect

add(Kf, handedOver (?x)),

del(Kf, inHand (?x, ?h)),

add(Kf, handEmpty (?h))

When ARMAR-III is instructed to bring an object to its operator it needs to hand
that object over. It does so using the HandOverObject action which in turn uses the
HandOverSkill which measures wrist forces to let go of the object when the operator
pulls on it. This handing over procedure is always performed at the location called
DeliverNode where the operator is typically located.

look-around

Parameters None
Action LookAround

To see all objects reachable in one of ARMAR-III’s workspaces its head has to be moved
around a bit to increase the field of vision. The look-around OAC does not have a
definition for PKS because PKS is not yet able to reason about finding objects that it is
not aware of. Instead this OAC is used by the SearchObjectsController which injects
it into the CEA’s queue after the robot reaches a different workspace location. It is also
included in the open-complete OAC so that ARMAR-III examines the contents of a
cupboard after opening it.

32



move

Parameters l1, l2
Action GoTo

PKS Precondition

K(isLocation (?l1)) &

K(isLocation (?l2)) &

K(?l1 != ?l2) &

K(robotLocation = ?l1)

PKS Effect

add(Kf, robotLocation = ?l2)

The move OAC takes the robot from one workspace location to another using the GoTo

action which does not make use of any preexisting ARMAR-III skills.

open-partial

Parameters l, h
Action OpenDoor

Configuration partial

PKS Precondition

K(isLocation (?l)) &

K(?l = Fridge) &

K(isHand (?h)) &

K(?h = rightHand) &

K(robotLocation = ?l) &

!K(objOpen (?l)) &

!K(objPartialOpen (?l)) &

K(handEmpty (?h))

PKS Effect

add(Kf, objPartialOpen (?l))

The open-partial OAC applies only to the fridge door which needs to be opened par-
tially with the right hand before being opened completely with the left hand.

33



open-complete-not-looking

Parameters l, h
Action OpenDoor

Configuration complete

This OAC is responsible for opening fridge, cupboard and dishwasher doors using the
OpenDoor action. The fridge can only be completely opened using this OAC if it has
already partially opened using open-partial. The OpenDoor action makes use of the
existing OpenDoor and OpenDishwasher tasks which contain hardcoded configuration.
The name of this OAC was chosen to distinguish it from the open-complete super OAC
used by the planner which is described in the next section.

open-complete

Parameters l, h
Action SuperOAC

Configuration [open-complete-not-looking(l, h), look-around()]

PKS Precondition

K(isLocation (?l)) &

K(?l = Fridge) &

K(isHand (?h)) &

K(?h = leftHand) &

K(robotLocation = ?l) &

!K(objOpen (?l)) &

K(objPartialOpen (?l)) &

K(handEmpty (?h))

PKS Effect

add(Kf, objOpen (?l)),

del(Kf, objPartialOpen (?l))

The open-complete OAC is both responsible for opening the fridge completely after it
has been partially opened and opening the dishwasher and cupboards. This OAC is a
super OAC, meaning it delegates its work to a sequence of other OACs. After opening
a door it yields to the look-around OAC so that ARMAR-III inspects the opened
container for objects it might not have previously known about.

34



pass-object

Parameters x, h1, h2
Action PassObject

PKS Precondition

K(isObject (?x)) &

K(isHand (?h1)) &

K(isHand (?h2)) &

K(?h1 != ?h2) &

K(inHand (?x, ?h1)) &

K(handEmpty (?h2))

PKS Effect

add(Kf, handEmpty (?h1)),

add(Kf, inHand (?x, ?h2)),

del(Kf, handEmpty (?h2)),

del(Kf, inHand (?x, ?h1))

The pass-object OAC allows ARMAR-III to pass an object currently held in one hand
to the other. This is particularly useful when ARMAR-III needs to execute an OAC that
only works with the hand the object is currently located in. For example if ARMAR-III
wants to place an object in the fridge it can open the fridge partially with its right hand
while holding the the object in its left hand. Then the object is passed to the right hand
to free the left hand for opening the door completely.

35



put-down

Parameters x, l, h
Action Place

PKS Precondition

K(isObject (?x)) &

K(isLocation (?l)) &

(K(?l = Sideboard) | K(?l = Stove)) &

K(isHand (?h)) &

K(robotLocation = ?l) &

K(inHand (?x, ?h))

PKS Effect

add(Kf, handEmpty (?h)),

add(Kf, objLocation (?x, ?l)),

del(Kf, inHand (?x, ?h)),

add(Kf, onSurface (?x))

The put-down OAC uses the Place action to place an object on a surface that ARMAR-III
held in its hand. The Place action uses the preexisting PlaceSkill which contains hard-
coded configuration making further configuration in the OAC unecessary.

36



remove-from

Parameters x, l, h
Action Grasp

PKS Precondition

K(isObject (?x)) &

K(isLocation (?l)) &

K(isHand (?h)) &

((K(?l = Fridge) & K(?h = rightHand ))) &

K(robotLocation = ?l) &

K(objOpen (?l)) &

K(objLocation (?x, ?l)) &

K(handEmpty (?h))

PKS Effect

add(Kf, inHand (?x, ?h)),

del(Kf, handEmpty (?h)),

del(Kf, objLocation (?x, ?l))

The remove-from OAC is used to grasp an object located in the fridge. Just like the
grasp and grasp-from OACs it uses the Grasp action to execute its task.

5.3 Scenario

The scenario used for the ARMAR-III experiment is called make-drink. It enables the
IceNetwork and PlanNetwork ActivityControllers which take care of communicating
with PKS. The SearchObjectsController makes sure that ARMAR-III explores the
kitchen when it has not yet recognised any objects so that it can properly plan a solution
aftwards. The PlanNetworkPerceptionHandler makes sure that short-term memory
updates are passed on to the plan execution monitor. The SelfPerceptor and the
LocationPerceptor ensure that ARMAR-III’s state and current location are always
up to date in short-term memory. For object recognition the IVTPerceptor is enabled
and the RelativePositionPerceptor further processes the information provided by the
vision system. The PKS goal condition is encoded as:

K(objLocation($CUP , Sideboard )) &

K(objLocation($JUICE , Sideboard )) &

!K(objOpen(Fridge )) &

!K(objPartialOpen(Fridge ))

The placeholders $CUP and $JUICE are automatically replaced by the speech recog-
nition system with the proper object identifiers at runtime.

37



5.4 Resulting plan

Putting all these pieces together the plan generated by PKS to solve the problem for
cup1 and applejuice is the following:

move(Sideboard ,Fridge)

open -partial(Fridge ,rightHand)

open -complete(Fridge ,leftHand)

remove -from(applejuice ,Fridge ,rightHand)

pass -object(applejuice ,rightHand ,leftHand)

close(Fridge ,rightHand)

move(Fridge ,Stove)

grasp(cup1 ,Stove ,rightHand)

move(Stove ,Sideboard)

put -down(applejuice ,Sideboard ,leftHand)

put -down(cup1 ,Sideboard ,rightHand)

If one starts the plan with the robot already holding cup1 in its hand, the resulting
shorter plan is:

put -down(cup1 ,Sideboard ,rightHand)

move(Sideboard ,Fridge)

open -partial(Fridge ,rightHand)

open -complete(Fridge ,leftHand)

remove -from(applejuice ,Fridge ,rightHand)

pass -object(applejuice ,rightHand ,leftHand)

close(Fridge ,rightHand)

move(Fridge ,Sideboard)

put -down(applejuice ,Sideboard ,leftHand)

If instead the robot is asked to retrieve two stacked objects cup1 and cup2 from the stove
and bring them to the sideboard the plan looks as follows:

move(Sideboard ,Stove)

grasp -from(cup2 ,Stove ,leftHand)

grasp(cup1 ,Stove ,rightHand)

move(Stove ,Sideboard)

put -down(cup2 ,Sideboard ,lefthand)

put -down(cup1 ,Sideboard ,righthand)

38



Combining the two tasks to one in which the robot has to retrieve the stacked cups as
well as the apple juice, the resulting plan deals with the applejuice separately from the
two stacked objects. The robot cannot hold more than two objects at a time so it would
be less efficient to go from the fridge to the stove, put down the applejuice in order to
unstack and grasp the two cups only two have to move from the stove to the sideboard
twice, than to drop the applejuice off at the sideboard first.

move(Sideboard ,Fridge)

open -partial(Fridge ,rightHand)

open -complete(Fridge ,leftHand)

remove -from(applejuice ,Fridge ,rightHand)

pass -object(applejuice ,rightHand ,leftHand)

close(Fridge ,rightHand)

move(Fridge ,Sideboard)

put -down(applejuice ,Sideboard ,leftHand)

move(Sideboard ,Stove)

grasp(cup1 ,Stove ,rightHand)

move(Stove ,Sideboard)

grasp -from(cup2 ,Stove ,leftHand)

grasp(cup1 ,Stove ,rightHand)

move(Stove ,Sideboard)

put -down(cup2 ,Sideboard ,lefthand)

put -down(cup1 ,Sideboard ,righthand)

39





6 Conclusion and Outlook

In this thesis a working architecture for the execution of Object-Action Complexes on a
humanoid robot is demonstrated. The presented system is capable of generating a variety
of plans for complex tasks using a dynamically assembled planning domain rather than
a completely hand crafted domain. Thus the system is scalable through the addition of
new Object-Action Complexes alone and does not require a redesign of the entire domain
when teaching the robot new capabilities.

The concept of Object-Action Complexes provides a practical method for exchanging
information between different components of a cognitive system.

For a more complete evaluation of the proposed architecture, a more extensive library of
OACs is required. Since ARMAR-III has been used for many other activities it continues
to be a suitable platform for experiments. With a larger library of OACs it will become
more feasible to evaluate significantly longer plans and plans involving more objects.

Episodic memory could be introduced into the architecture for the recording of OAC
sequences and their success rates. The retrieved information could prove useful for
optimising the order of OACs and potentially inserting OACs between OACs with prob-
lematic transitions based on past experience.

41





References

[1] T. Asfour, K. Regenstein, P. Azad, J. Schröder, N. Vahrenkamp, and R. Dillmann,
“ARMAR-III: An Integrated Humanoid Platform for Sensory-Motor Control,” in
IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2006, pp.
169–175.

[2] T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum, K. Welke,
J. Schröder, and R. Dillmann, “Toward humanoid manipulation in human-centred
environments,” Robotics and Autonomous Systems, vol. 56, no. 1, 2008.

[3] R. E. Fikes and N. J. Nilsson, “STRIPS: a new approach to the application of
theorem proving to problem solving,” in Proceedings of the 2nd international joint
conference on Artificial intelligence. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1971, pp. 608–620.

[4] D. McDermott, “PDDL – The Planning Domain Definition Language,” Yale Center
for Computational Vision and Control, Tech. Rep. CVC TR-98-003/DCS TR-1165,
1998.

[5] R. Petrick and F. Bacchus, “A Knowledge-Based Approach to Planning with Incom-
plete Information and Sensing,” in Proceedings of the Sixth International Confer-
ence on Artificial Intelligence Planning and Scheduling (AIPS-2002), M. Ghallab,
J. Hertzberg, and P. Traverso, Eds. Menlo Park, CA: AAAI Press, Apr. 2002, pp.
212–221.

[6] ——, “Extending the Knowledge-Based Approach to Planning with Incomplete
Information and Sensing,” in Proceedings of the International Conference on Au-
tomated Planning and Scheduling (ICAPS-04), S. Zilberstein, J. Koehler, and
S. Koenig, Eds. Menlo Park, CA: AAAI Press, Jun. 2004, pp. 2–11.

[7] R. Petrick, “A Knowledge-level approach for effective acting, sensing, and plan-
ning,” Ph.D. dissertation, Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada, 2006.

[8] K. Okada, S. Tokutsu, T. Ogura, M. Kojima, Y. Mori, T. Maki, and M. Inaba, “Sce-
nario controller for daily assistive humanoid using visual verification, task planning
and situation reasoning,” in Intelligent Autonomous Systems, 2010. IAS-10. 10th
International Conference on, Okada, pp. 398–405.

[9] S. Tokutsu, K. Okada, and M. Inaba, “Environment situation reasoning integrating
human recognition and life sound recognition using DBN,” in Robot and Human
Interactive Communication, 2009. RO-MAN 2009. The 18th IEEE International
Symposium on, Toyama, pp. 744–750.

[10] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach (2nd Edi-
tion). Prentice Hall, December 2002.

43



[11] A. Haneda, K. Okada, and M. Inaba, “Realtime manipulation planning system inte-
grating symbolic and geometric planning under interactive dynamics siumlator,” in
Mechatronics and Automation, 2008. ICMA 2008. IEEE International Conference
on, Takamatsu, pp. 988–993.

[12] J. Hoffmann and B. Nebel, “The FF planning system: fast plan generation through
heuristic search,” J. Artif. Int. Res., vol. 14, pp. 253–302, May 2001. [Online].
Available: http://portal.acm.org/citation.cfm?id=1622394.1622404

[13] C. McGann, E. Berger, J. Bohren, S. Chitta, B. Gerkey, S. Glaser, B. Marthi,
W. Meeussen, T. Pratkanis, E. Marder-Eppstein, and M. Wise, “Model-based, Hi-
erarchical Control of a Mobile Manipulation Platform,” in ICAPS Workshop on
Planning and Plan Execution for Real-World Systems, Thessaloniki, Greece, 2009.

[14] ZeroC Inc., “Internet Communications Engine (Ice).” [Online]. Available: http:
//www.zeroc.com/

[15] M. Henning, “A New Approach to Object-Oriented Middleware,” IEEE Internet
Computing, vol. 8, no. 1, pp. 66–75, 2004.

[16] M. E. Foster, T. By, M. Rickert, and A. Knoll, “Human-Robot dialogue for joint
construction tasks,” in ICMI ’06: Proceedings of the 8th international conference
on Multimodal interfaces. New York, NY, USA: ACM, 2006, pp. 68–71.

[17] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Orebäck, “Orca: A
Component Model and Repository,” in Software Engineering for Experimental
Robotics, ser. Springer Tracts in Advanced Robotics, D. Brugali, Ed. Springer
Berlin / Heidelberg, 2007, vol. 30, pp. 231–251, 10.1007/978-3-540-68951-5 13
http://dx.doi.org/10.1007/978-3-540-68951-5 13.

[18] M. Henning and S. Vinoski, Advanced CORBA programming with C++. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[19] N. Krüger, J. Piater, F. Wörgötter, C. Geib, R. Petrick, M. Steedman, A. Ude,
T. Asfour, D. Kraft, D. Omrcen, B. Hommel, A. Agostino, D. Kragic, J. Eklundh,
V. Krüger, and R. Dillmann, “A Formal Definition of Object Action Complexes and
Examples at Different Levels of the Process Hierarchy,” EU project PACO-PLUS,
Tech. Rep., 2009.

[20] A. Agostini, E. Celaya, C. Torras, and F. Wörgötter, “Learning Rules from Cause-
Effects Explanations.” Institut de Robòtica i Informàtica Industrial, CSIC-UPC,
Tech. Rep. IRI-TR 04/2008, 2008.

[21] A. Agostini, F. Wörgötter, E. Celaya, and C. Torras, “On-Line Learning of Macro
Planning Operators using Probabilistic Estimations of Cause-Effects,” Institut de
Robòtica i Informàtica Industrial, CSIC-UPC, Tech. Rep. IRI-TR 05/2008, 2008.

[22] Kitware Inc., “CMake.” [Online]. Available: http://www.cmake.org/

44

http://portal.acm.org/citation.cfm?id=1622394.1622404
http://www.zeroc.com/
http://www.zeroc.com/
http://www.cmake.org/


[23] G. Rozental, “Boost Test Library: The Unit Test Framework.” [Online]. Available:
http://www.boost.org/doc/libs/1 44 0/libs/test/doc/html/utf.html

[24] D. van Heesch, “Doxygen.” [Online]. Available: http://www.stack.nl/˜dimitri/
doxygen/

[25] M. Fowler, “Inversion of Control Containers and the Dependency Injection
Pattern.” [Online]. Available: http://martinfowler.com/articles/injection.html

[26] J. Fulman and E. L. Wilmer, “ECMAScript Language Specification.” Ann. Appl.
Probab, vol. 9, pp. 1–13, 1999. [Online]. Available: http://www.ecma-international.
org/publications/files/ECMA-ST/Ecma-262.pdf

[27] D. Crockford, “RFC 4627 - The application/json Media Type for JavaScript
Object Notation (JSON),” IETF RFC, Tech. Rep. [Online]. Available: http:
//tools.ietf.org/html/rfc4627

[28] S. P. Jones, “The Haskell 98 Report.” [Online]. Available: http://haskell.org/
onlinereport/exps.html#pattern-matching

[29] Ericsson AB, “Erlang Reference Manual User’s Guide.” [Online]. Available:
http://erlang.org/doc/reference manual/expressions.html#pattern

[30] D. Kraft, E. Başeski, M. Popović, A. Batog, A. Kjær-Nielsen, N. Krüger, R. Petrick,
C. Geib, N. Pugeault, M. Steedman, T. Asfour, R. Dillmann, S. Kalkan, F. Wörgöt-
ter, B. Hommel, R. Detry, and J. Piater, “Exploration and planning in a three-level
cognitive architecture,” in Proceedings of the International Conference on Cognitive
Systems (CogSys 2008), 2008.

45

http://www.boost.org/doc/libs/1_44_0/libs/test/doc/html/utf.html
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
http://martinfowler.com/articles/injection.html
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://haskell.org/onlinereport/exps.html#pattern-matching
http://haskell.org/onlinereport/exps.html#pattern-matching
http://erlang.org/doc/reference_manual/expressions.html#pattern

	Motivation
	Current State of ARMAR in the Kitchen
	Context and Goal of this Thesis

	State of the Art
	Planning in Artificial Intelligence
	PKS: Planning with Knowledge and Sensing

	State of the Art in Robotics
	Task Planning on the Humanoid Robot HRP2
	Hierarchical Planning with TREX on the Mobile Manipulation Platform PR2

	ICE in Robotics Projects

	Integration Concept with Object-Action Complexes
	OACs in PACO+
	Applying the OAC Concept in Software
	OACs in PKS
	Action and Object Representations
	An Executive for Object-Action Complexes


	Implementation of the OAC-based Integration Concept
	Software Architecture
	Conceptual View
	Technology Used in the Implementation

	PKS: Planning with Knowledge and Sensing
	Short-Term Memory
	Long-Term Memory
	Implementation of the Central Executive Agent
	Component Interfaces
	SymbolicExecution::CEAControllerTopic
	SymbolicExecution::CEAInfoTopic
	SymbolicExecution::CEAInfo
	Planning::PlanControllerTopic
	Planning::PlannerInfo
	LTM::LTM


	Application of SPOAC to ARMAR-III
	Properties
	OACs
	Scenario
	Resulting plan

	Conclusion and Outlook

