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Abstract— Providing autonomous humanoid robots with the
abilities to react in an adaptive and intelligent manner involves
low level control and sensing as well as high level reasoning.
However, the integration of both levels still remains challenging
due to the representational gap between the continuous state
space on the sensorimotor level and the discrete symbolic
entities used in high level reasoning. In this work, we approach
the problem of learning a representation of the space which
is applicable on both levels. This representation is grounded
on the sensorimotor level by means of exploration and on the
language level by making use of common sense knowledge. We
demonstrate how spatial knowledge can be extracted from these
two sources of experience. Combining the resulting knowledge
in a systematic way yields a solution to the grounding problem
which has the potential to substantially decrease the learning
effort.

I. INTRODUCTION AND RELATED WORK

Establishing robotic systems that offer a level of autonomy
suitable for real world applications requires bringing together
expertise and approaches from a variety of different research
fields. One of the most challenging problems therewith
consists in integrating high level artificial intelligence (AI)
with low level robot control.

The main challenge arises form the representational dis-
continuity between the continuous state spaces of robot
control and the discrete symbolic representation used in most
AI approaches. In order to fill-in this representational gap,
the concept of object-action complexes (OACs) has been
proposed as representation for all levels of the processing
hierarchy ([1]). The OAC follows the affordance concept
and tightly couples perception and action within a single
representation. Applications of the OAC concept on several
levels of the hierarchy including high level planning have
been demonstrated ([2], [3]).

Bridging the gap between low level and high level pro-
cessing requires defining a path from the continuous world
to the symbolic representation and vice versa. While the OAC
formalization takes into account the major processes within
a cognitive architecture such as learning, predicting, and
execution, the underlying structure in terms of appropriate
state spaces needs to be defined in a problem specific way.

In this work, we focus on deriving representations of the
spatial domain enabling the connection of high level planning
with the sensori-motor level in humanoid robots. The need

of such a representation can be visualized by considering
the following action defined within a PDDL [4] domain
specification:

(:action putdown
:parameters ( ?x ?y ?z )
:precondition (and (inHand ?x ?z)

(hand ?z)
(location ?y)
(graspable ?x))

:effect (and (handEmpty ?z )
(at ?x ?y)
(not(inHand ?x ?z))))

The action putdown describes the process of putting
an object ?x held in the hand ?z to a location ?y. Two
properties of this action render it a good example for the
proposed work: First, the putdown action is required in
several assistance tasks such as setting the table or stowing
away. Second, the action has a direct reference to the spatial
domain by means of the location ?y. The spatial parameter
?y appears in the binary predicate at ?x ?y which is
necessary to describe the effect on the world state.

The goal now consists in establishing a representation for
the parameter ?y which is valid on the semantic as well
as on the sensori-motor level. On the bottom-up path, this
representation needs to support the observation of the world
change triggered by the action in terms of the predicate
at ?x ?y. On the top-down path, the execution of the
action needs to be parameterized with the appropriate spatial
location from the continuous domain in order to achieve this
world change.

The simultaneous task and motion planning (STAMP) field
tackles the problem of combining task planning and metric
level. The goal consists in combining task and collision-free
motion planning in a consistent fashion ([5],[6],[7],[8]). In
contrast to STAMP, where full knowledge of the metrics and
geometry as well as full knowledge of the task planning
domain is assumed, our research focus lies on exploiting
experience to improve the learning process of such repre-
sentations.

Semantic information in spatial representations has been
exploited in semantic maps of the environment in the nav-
igation and mapping field [9]. Such semantic maps usually
describe topological relations between semantic places in
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the environment. Either these places are directly perceivable
using appropriate models or detectors (e.g. [10]) or inferred
using a known model of the binding from semantics to
detectable places ([11], [12], [13], [14]).

In contrast to these approaches, the idea of exploiting
experience in order to learn these semantic bindings of
places stands at the core of our approach. Without the use
of detectors for places, we make use of available common
sense knowledge in order to establish the binding between
semantics and the explored metrical representation. The
extracted common sense knowledge is transferable from one
environment to another and thus provides a consistent bind-
ing to the symbolic world. This transferability is essential
for establishing task planning across large domains.

The extraction of spatial relations from natural language
has been studied in application to understanding commands
or directions to robots given in natural language (e.g. [15],
[16], [17]). In contrast to approaches based on annotated
corpora of command-executions or route instructions, or
using knowledge bases like Open Mind Common Sense [18]
explicitly created for artificial intelligence applications, we
extract the relevant relations from large amounts of text
written by humans for humans. The text mining techniques
used in [19] and [20] to extract action-tool relations to
disambiguate visual interpretations of kitchen actions are
related.

II. THE SYSTEM CONCEPT

A. Conceptual assumptions

The focus of this work lies in the acquisition of grounded
spatial representations from experience. Obviously this spa-
tial knowledge is only a small fraction of the overall knowl-
edge required to operate the system in an autonomous way.
In order to clearly outline our approach, we assume prior
knowledge to be present in several forms on the system.
The prior knowledge assumed in this work includes
• Object knowledge: We assume extensive prior knowl-

edge on objects in the world. This knowledge includes
object models for recognition and localization as well
as the associated class labels. More precisely, we know
the models and class labels for common manipulable
kitchen objects such as cups, plates, milk, or juice
available from the KIT object model database [21].

• Action knowledge: We assume that the robotic platform
is able to perform basic actions. We explicitly make use
of the grasp and putdown actions during the exploration
phase. Further, locomotion abilities are necessary in
order to allow learning of larger scale spatial domains.

In order to apply the gathered knowledge in task planning,
it is necessary to have full knowledge of the planning
domain. In order to execute the plan, a sensori-motor repre-
sentation of all involved actions and all predicates needs to be
available. All non-locational constants, such as class labels
of objects, need to be grounded on the sensori-motor level.
The rules in terms of pre- and postconditions of actions have
to be known, but can also be learned by exploration [22]. The

missing piece, the combined sensori-motor representation of
locations and the associated symbolic constant is learned by
our approach.

B. System architecture
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Fig. 1: The integration between the task planning level and
the sensori-motor level is established by the central executive
agent (CEA). For each plan element the CEA instantiates
the appropriate OAC and associated predicates and entities.
Entities correspond to constants on the planning level. The
goal of this work consists in learning an entity of type
location from experience.

While addressing a quite specific problem of symbol
grounding for task planning in this work, we do not consider
this problem isolated but within the context of a systematic
way of coupling high level task planning with the sensori-
motor level on humanoid robots. For this purpose, we de-
veloped and implemented an architecture that couples these
levels. Relevant components within this architecture are il-
lustrated in Fig. 1, where the focus lies on how sensori-motor
representations are made available for planned task execution
and plan monitoring. The major involved components are
the task planner, the central executive agent (CEA) and the
memory system. In our current implementation we make use
of the PKS planner for STRIPS like task planning with the
support of plan monitoring ([23], [24]). The CEA is the
mediator between planning level and memory system. Its
purpose is bidirectional: Bottom-up it translates the content
of the working memory (WM) to a world state in PDDL
format in order to enable planning and plan monitoring.
Top-down the CEA translates plans from the PDDL domain
to OAC representations. In a sequential manner it instanti-
ates OACs from the long-term memory (LTM) in the WM
according to the active plan element. Further, in order to
allow state monitoring, it creates instances of required WM
elements associated with the OAC. Such elements include

485



unary, binary, or n-nary predicates as required for the PDDL
world state description and entities which correspond to
constants on the planning level such as objects and locations.
The underlying execution and perception mechanisms take
care of keeping these constants and predicates consistent with
the real world.

Taking into account this architecture the goal now consists
in learning the representation of an entity class for locations
which can be used as constant of type location ?y and
can be used with the predicate at ?x ?y. While the class
stored in LTM should be valid for different tasks and objects,
the instantiation of this entity in the WM is specific for the
current task and object.

III. ACQUIRING SPATIAL KNOWLEDGE FROM
EXPERIENCE

The acquisition of spatial knowledge from experience
has several advantages over resorting to manually generated
spatial representations. The most important benefit lies in the
improvement of the system’s autonomy by establishing the
required processes for acquiring such representations on the
robot.

In this work, we exploit two different sources of ex-
perience: experience gathered through exploration on the
robot system and experience available in common sense
knowledge. The exploration on the robot yields embodied
sensory-level representations that already encode the con-
straints of the platform such as the visibility of objects.
Spatial information from common sense knowledge on the
other hand is extracted from large text corpora and thus
provides knowledge on the symbolic level. In the following,
we introduce approaches that make available both sources of
knowledge for the acquisition of spatial knowledge. We will
show how to combine the gathered knowledge in order to
acquire grounded spatial symbols in Section IV.

A. Spatial knowledge from exploration

The goal of the exploration consists in incrementally
learning a spatial model of the environment with respect
to the set of known objects. More precisely, the developed
approach allows inferring common object locations based
on object detection and localization results from multiple
episodes. In order to keep the exploration effort low, the
robot performs self-observation: While the robot is controlled
through human interaction in our kitchen scenario, it records
all encountered and manipulated objects with location, label,
and current task.

1) Metric spatial representation: In order to represent the
encountered objects, we employ probabilistic and continuous
space representations, which are similar to those proposed by
Stulp et al. in their concept of ARPlace [25]. More precisely,
the object positions are described by a probability density
function (PDF) in 3D space. This approach allows avoiding
a prior space discretization, while simultaneously providing
a natural way to incorporate object localization uncertainty.
To represent the spatial distribution of an object class c, we
use the Gaussian Mixture Model (GMM):

fc(~x) =

N∑
i=1

wiN (~x; ~µi, ~Σi), ∀wi > 0 (1)

The GMM has an important property of being a universal
PDF approximator [26], which means that it can approximate
any given distribution with an arbitrary precision. From a
practical point-of-view, GMM is of particular interest be-
cause of its ability to cope with multi-modality and moderate
storage requirements.

2) Learning common locations: Each time an object is
recognized in the world, the spatial representation is up-
dated. Initially, we start with an empty GMM η for each
object class. The object position is modeled as a Gaussian
N (~x; ~µo,Σo) encoding the localization uncertainty in 3D
Cartesian space [27]. This Gaussian is added as a new
component with a constant weight (e.g., 1) to the GMM:
η ← η ∪ (1, ~µo,Σo) the corresponds to the object class. At
the same time, the following three operations are applied to
the existing components:
• Aging Since older observations are assumed to be less

relevant than the recent ones, the weights of correspond-
ing GMM components are reduced by multiplying with
the discount coefficient γ ∈ [0, 1]:

∀i wi ← γ · wi (2)

• Pruning Components with weights below the threshold
Wprune are removed from the mixture:

∀i : wi < Wprune η ← η \ (wi, ~µi,Σi) (3)

• Merging two components which are considered “sim-
ilar” in terms of their Mahalanobis distance d are
replaced with their moment-preserving merge:

d(i, j) < Dmin : η ← η \ (wi, ~µi,Σi), (wj , ~µj ,Σj)

η ← η ∪ (wm, ~µm,Σm) (4)

The calculation of (wm, ~µm,Σm) is performed accord-
ing to [28].

The resulting representation encodes the spatial distribution
of common object locations. The aging factor accounts for
changes in the scene, while pruning and merging keep the
representation compact. An example for common locations
on the table is illustrated in Fig. 2.

3) Querying: To make spatial knowledge accessible, it
should be provided at a suitable abstraction level for the task
at hand. For this purpose, we implemented a query interface
which allows for two types of generalization:
• Spatial generalization Spatial generalization allows

combining several neighbored observation to a single
cluster. For this purpose, three established GMM reduc-
tion algorithms were implemented (West [29], Runnalls
[30], Williams [28]). The level of generalization can
be adjusted by specifying the stop condition of the
GMM reduction. The stop condition is either defined
by a target number of clusters or by the maximum
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(a) M = 150 (b) M = 400

Fig. 2: Different clusterings of the same position distribution
achieved by setting (a) low and (b) high value of the
deviation threshold M.

Fig. 3: Common places learned from four ARMAR-III
kitchen demonstrations after spatial generalization.

deviation M within a cluster. An example of the spatial
generalization is illustrated in Fig. 2.

• Ontological generalization In addition to positions of
objects (e. g. Cup), places for abstract classes (e.g.
Food) can be queried as well. This is achieved by using
a simple class ontology with parent-child relations.

4) Common places in the kitchen domain: The learning
algorithm and clustering approach described above were
applied on object locations collected during the demonstra-
tions of the humanoid robot ARMAR-III ([31], [32]) in the
kitchen. In the scenario, the robot localized and manipulated
objects in the fridge and on the table. Figure 3 illustrates a
spatial generalization query on the representation resulting
from four ARMAR-III demonstrations.

B. Spatial relations from human knowledge

Besides learning from the robot’s own experience, we
would like to gain information on spatial relations from
human knowledge. Human knowledge could tell the robot
that milk is usually kept in refrigerators. Hence, there is a
certain probability that a spatial cluster containing positions
of milk is a refrigerator. In this section we propose a method
to infer a set of likely locations for a given object.

1) Extracting spatial relations from text: Spatial relations
are linguistically expressed using spatial prepositions:

Fig. 4: A syntactic ngram containing two content-words and
a preposition. The words are equipped with a part-of-speech
tag and a dependency label1.

• The milk is in the refrigerator
• Take a knife from the drawer.

In this work, we propose to determine the conditional prob-
ability of a location given an object based on the number
of matching prepositional relations in a text corpus. We are
aiming for prepositions like in and on, but do not predefine
a set of valid prepositions.

Let Nobj be the frequency of occurrence of obj in prepo-
sitional contexts and let Nobj,loc be the number of those
prepositional contexts where obj and loc occurr together. The
conditional probability P (loc|obj) can then be approximated
as follows:

P (loc|obj) =
P (obj, loc)

P (obj)
≈ Nobj,loc

Nobj
(5)

Working on the whole vocabulary of the corpus makes the
values of the conditional probability difficult to compare.
As we know the set L of possible locations in the kitchen
from the planning domain specification, we can formulate
the restricted conditional probability:

PL(loc|obj) =
PL(obj, loc)

PL(obj)
≈ Nobj,loc∑

l∈LNobj,l
(6)

These formulas imply the assumption that a text corpus is
a suitable foundation for estimating P (loc|obj). See section
III-B.4 for a discussion.

2) The Text Corpus: In this paper we propose to extract
spatial relations from the Google Books Ngrams Corpus [33],
in the following referred to as the Google Corpus. This
corpus contains a representation of 3.5 million English books
with a total size of about 345 billion words. It does not
contain the raw text. Several preprocessing steps have been
applied to the sentences:

1) Parsing into dependency trees
2) Extracting syntactic ngrams, i.e. n content-words long

subpaths of the dependency trees (see Fig. 4)
3) Counting the frequency of occurrence of each syntactic

ngram
We are using the corpus in its arcs-variant, which only
includes syntactic ngrams with two content-words plus pos-
sible non-content-words like prepositions or conjunctions.
Overall, the preprocessing makes the Google Corpus con-
venient for conducting analysis on the frequency of gram-
matical structures.

In the Google Corpus, each syntactic ngram is stored in a
distinct line. The information that is relevant in this paper is

1NN - noun, IN - preposition
dobj - direct object, prep - preposition, pobj - prepositional object
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TABLE I: Restricted conditional probability PL(loc|obj). Darker colors indicate higher probabilities, omitted probabilities
are zero.

cellar counter cupboard dishwasher drawer freezer microwave oven refrigerator/fridge shelf table
beer 0.0763 0.0518 0.0095 0.6045 0.2579
bread 0.0033 0.0235 0.0515 0.0017 0.0065 0.2566 0.0046 0.0181 0.6343
cereal 0.4045 0.1685 0.4270
coffee 0.0076 0.1458 0.0108 0.0120 0.0089 0.0203 0.7945
cup 0.0728 0.0337 0.0029 0.0066 0.0025 0.0172 0.0278 0.0059 0.0405 0.7901
dough 0.1293 0.0376 0.2674 0.3834 0.1823
juice 0.0190 0.0306 0.0146 0.0146 0.0889 0.6064 0.2259
knife 0.0723 0.2752 0.0089 0.0036 0.0197 0.6203
meat 0.0194 0.0180 0.0143 0.0680 0.0132 0.1180 0.1309 0.0028 0.6154
milk 0.0275 0.0299 0.0141 0.0255 0.0319 0.1054 0.3832 0.0238 0.3586
pot 0.0103 0.1154 0.0291 0.1195 0.0139 0.0734 0.6385
wine 0.4128 0.0061 0.0144 0.0112 0.0387 0.0050 0.5119

the ngram itself and its frequency of occurrence. The entry
for the exemplary ngram in Fig. 4 looks as follows:

milk/NN/dobj/0 in/IN/prep/1 refrigerator/NN/pobj/2 160

The syntactic ngram’s path consists of three nodes, each
containing the following relevant fields:
• The word that the node represents in the original sen-

tence (e.g. milk).
• The Penn-Treebank part-of-speach tag [34] for this word

(e.g. NN).
• The basic Stanford-dependencies label [35] for the

node’s grammatical function (e.g. dobj).
The final number is the frequency of occurrence of the
syntactic ngram. This exemplary ngram occurred 160 times
in the Google Corpus.

3) Extracting Relations from the Corpus: We are inter-
ested in extracting prepositional relations between objects
and locations. Referring to the above exemplary line from
the Google Corpus, we are looking for lines that match the
following pattern:2

[object]/NN/•/• •/•/prep/• [location]/NN/•/•. (7)

After searching and accumulating prepositional contexts with
regard to pattern (7), the probability of a location given an
object can be approximated using (6).

4) Evaluation: Table I shows the restricted conditional
probabilities PL(loc|obj) as defined in (6) of a set of objects
(y-axis) given a predefined set of possible locations (x-axis).
The table shows that the proposed method of extracting
prepositional contexts from a text corpus is able to infer
reasonable values for PL(loc|obj). Exemplary conclusions
that can be drawn from the results include:
• Refrigerators are a likely location for beer, juice and

milk.
• Cups and coffee may be found on tables.
• Apart from the oven, bread could be on a table or in a

cupboard.

IV. GROUNDED SPATIAL SYMBOLS
In this section we will outline how symbols for locations

can be obtained which are grounded in language as well

2“•” denotes a wildcard

as in the continuous domain. For this purpose, the two
sources of experience introduced in the previous section,
exploration and common sense knowledge, are combined.
In the following we will show how the predicate at ?x
fridge can be inferred from experience. Since we assumed
to have a representation of all involved objects on the sensory
as well as on the symbolic level, we know all enumerations
of the parameters ?x and the associated object models. The
problem of evaluating the above predicate then boils down to
inferring a grounded representation of the location constant
fridge. Note that the constant fridge does not refer to
an object but to the support locations offered by the fridge in
terms of the at predicate as defined in our PDDL definition
of the putdown action in section I.

The greedy acquisition of a representation of the fridge
locational constant grounded in the spatial domain would
require providing a large set of spatial locations correspond-
ing to the fridge together with the symbolic tag. Collecting
this data on the robot either requires the involvement of
a teacher, or the evaluation of the symbolic binding via
higher level inference (e.g. by exploiting knowledge such as
temperature in the fridge) in order to assert the validity of the
symbolic tag. Such grounding processes are slow and costly
in terms of resources. By exploiting experience, a good prior
for such constants can be achieved, substantially decreasing
the grounding effort.

The complete chain of acquiring a grounded representation
of fridge from experience is illustrated in Fig. 5. The
only prior knowledge at the start of the process consists in a
common reference frame for spatial locations that defines the
space of all possible locations. Through self-observation and
by applying common sense knowledge, we calculate a prior
for fridge support locations. The final grounding step again
involves means of ascertaining the gained representation
similar to the greedy approach but with a prior that eases the
grounding process. In the following, the single steps towards
this prior are discussed in detail.

A. Exploration of grounded support locations

The first step in our approach consists in determin-
ing grounded support locations in the environment by ex-
ploration. This exploration is realized by means of self-
observation as introduced in Section III-A. The resulting

488



support locations

all locations

fridge
support locations

fridge
support locations

prior knowledge

self-observation

common sense

grounding

grounded knowledge

at ?x  *

sensory symbolic

at ?x fridge

sensory

Fig. 5: The proposed approach for acquiring grounded
spatial symbols combines two sources of experience: Self-
observation of the robot during the execution of kitchen tasks
yields grounded representations of support locations. These
support locations are associated with semantic symbols by
exploiting common sense knowledge.

Be
BeBe

Ju

Ju

Ju

Ju
Ju

JuJu

Do

Do
Mi

Mi
Mi

Ju
Ju

Br Br

Br
Br

Cu
Cu

Cu

CuCo Co

Ju

Mi

Mi Po
Po

Po

Fig. 6: Simulation of the exploration phase with the following
objects: beer, bread, coffee, cup, dough, juice, milk, pot.
The pickup and putdown poses were chosen at random in
the fridge and on the table.

locations collected during the execution of tasks on the robot
are stored using the proposed metric spatial representation.
Thereby, each experienced location is accompanied with
the label of the occupying object and the action that has
been executed on the object. In order to extract support
locations from this data, only these locations are considered
which correspond to the actions pickup or putdown. Since
the support locations are collected during self-observation,
the resulting representation naturally includes reachability
constraints of the experimental platform. With this represen-
tation, we acquired a grounded concept of support locations
for the covered objects ?x denoted with at ?x * in Fig.
5. An example of such a representation based on simulated
data is illustrated in Fig. 6.

B. Common sense knowledge for symbol binding

In the second step of our approach, we employ common
sense knowledge in order to establish a symbolic binding for
support locations within the representation explored in the
previous step. In our example, the goal consists in inferring
a good prior for at ?x fridge based on the explored

at ?x *. The major challenge here consists in establishing
a representation of the location constant fridge that is
grounded in the sensory as well as in the language domain.
Here we exploit that spatial relations between objects and
locations are part of human common sense knowledge and
are accessible on the linguistic level in terms of prepositional
structures as detailed in Section III-B. For each location
stored in the representation from step one we can conclude
the probability of belonging to a fridge location by accessing
the associated object class label and querying the common
sense knowledge encoded in Table I. By assuming that
locational symbols stay constant in the local neighborhood
(e.g. neighbored locations of a fridge location are also likely
to be fridge locations), evidence for the symbol can be
propagated from location to location. This can be efficiently
implemented by making use of the spatial generalization
query introduced in Section III-A.3. For each resulting soft
cluster, the associated likelihood of belonging to the location
fridge is collected over all object locations belonging to
the cluster by means of a linear opinion pool. Figure 7
illustrates the result of this process for the simulated data
from Fig. 6. Using an appropriate deviation threshold for
spatial generalization yields two clusters: one in the fridge
and one on the table. The probability of the fridge cluster be-
longing to the constant fridge is calculated with the above
procedure and amounts to P (Fridge|O1) = 0.53. The same
approach for the table cluster yields P (Fridge|O2) = 0.15.
The application of common sense knowledge in this way
allows exploiting negative examples. For instance, clusters
that contain a high frequency of cups are not likely to be
located in the fridge according to Table I.

Associating the explored objects with location symbols by
exploiting common sense knowledge yields the representa-
tion we were seeking: a representation of the locational con-
stant fridge which is grounded within the metric spatial
representation. This representation can be used to establish
the world state in terms of the predicate at ?x fridge.
For objects ?x that lie in the fridge cluster this predicate
is valid. Further, the explored locations associated with the
cluster can be used to parameterize the action putdown ?x
fridge ?z. This process of course involves thresholding
the probability values in Fig. 7 which might not be trivial
in all cases. Nevertheless, we achieved a good prior for the
symbolic binding which allows quite efficient disambiguation
in further grounding processes.

V. DISCUSSION
A. Contributions

In this work we presented an approach for learning a
representation of space applicable on the task planning as
well as on the sensori-motor level. In order to establish
a symbolic link to the continuous world, we exploited
two sources of experience: experience from exploration and
experience from common sense knowledge.

While this work developed the approach in a quite exem-
plary manner, based on the fridge example, the general
concept is applicable to most typical places in human made
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P(Fridge|O1)=0.53 P(Fridge|O2)=0.15

Fig. 7: Result of spatial generalization with deviation thresh-
old M = 400. The cluster in the fridge O1 has a much
higher probability of being the fridge as the cluster O2 on the
table. This result is achieved only based on the observation
of objects and the extraction of prepositional contexts.

TABLE II: Most frequent prepositions for locations

first second
cellar in - 69% from - 27%
counter on - 81% at - 9%
cupboard in - 71% from - 29%
dishwasher in - 100%
drawer in - 86% from - 14%
freezer in - 96% from - 4%
microwave in - 100%
oven in - 81% from - 9%
refrigerator/fridge in - 80% from - 20%
shelf on - 95% from - 5%
table on - 73% at - 9%

environments. The common sense knowledge provides trans-
ferable concepts for places. Considering the table location
in Table I implies that the table is a quite versatile support
surface. Based on this knowledge we would assign the
symbol table to places which are used to support numerous
different objects, independent of the current domain.

The application of common sense knowledge was demon-
strated on simulated data in order to show the feasibility
of the approach. The same could be done on the real data
collected through exploration. However, the real kitchen
data only covered the object juice in the fridge, which
would result in a quite simple query to the common sense
knowledge (e.g. P (Fridge|O1) = 0.6). Further, not all
objects on the table had a significant amount of occurrences
in the corpus. This stems from the fact, that often classes are
used in language instead of single instances of the object (e.g.
cereal vs. vitalis cereal). This problem could be addressed
by means of the ontological generalization as explained in
Section III-A.

B. Outlook

So far, we used the predicate at in order to express that
an object is at a specific location. However, this preposition
is not quite common and would probably not be applied
in order to describe a location in the fridge. Rather, we
would use prepositions which also encode the function of the

location such as in, on, or from. In the proposed approach
we used all prepositions to query for locations in order to get
a significant amount of occurrences of a location independent
of its function. In task planning however, there can be a huge
difference between putting something on a place or in a place
(e.g. open the door before putting in). This problem can be
addressed by making use of the corpus again. As can be
seen in Table II the query yields the correct prepositions for
fridge and table and thus also allow to infer this functional
aspect from common sense knowledge.
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