
Gain Control over your
Dependencies with
Private Packagist

Nils Adermann
@naderman

Private Packagist
https://packagist.com

Nils Adermann
@naderman

What is Dependency Management?

- Assembly

- Dependency Change Management

- Risk Analysis & Reduction

May happen at build time or at runtime

Nils Adermann
@naderman

Dependency Assembly

- Installation of Libraries, Tools, etc.
- composer install
- apt-get install foo
- Application of Configuration Management (Puppet, Chef, Ansible, Salt, …)

- Configuration for Connections to Services, external APIs
- Authentication
- Glue Code

- Connection to Services (usually at Runtime)

Nils Adermann
@naderman

Dependency Assembly

Past:

- Step-by-Step installation instructions
- Readmes, Delete and reinstall individual packages

Today:

- Description of a system state (e.g. composer.json, top.sls)
- Tools to move the system into the state (e.g. composer, salt)

Nils Adermann
@naderman

Dependency Change Management

- Dependency Change
- Adding, Removing, Updating, Replacing of Libraries
- Replacing APIs
- composer update

- Dependency Change Management
- Balance Risks, Consequences, Cost & Advantages
- Architecture Decisions which enable “Change”

- Example: Abstraction to replace concrete service

Nils Adermann
@naderman

A brief history of Composer

- Symfony & phpBB plugins
- Apr 2011 - First Commit
- Sep 2011 - Packagist.org
- Apr 2012 - First 1,000 Packages
- Apr 2013 - First 10,000 Packages
- Jun 2014 - Toran Proxy

July 2017: 147,000 Packages with 907,000 Versions

Nils Adermann
@naderman

A brief history of Composer

- Symfony & phpBB plugins
- Apr 2011 - First Commit
- Sep 2011 - Packagist.org
- Apr 2012 - First 1,000 Packages
- Apr 2013 - First 10,000 Packages
- Jun 2014 - Toran Proxy
- Dec 2016 - Private Packagist

Nils Adermann
@naderman

Composer Design Principles

- Separate independent tools and services
- Avoid PEAR confusion and problems

- Build reusable code to allow for other tools and services to emerge
- Check out https://github.com/composer

Nils Adermann
@naderman

composer update/install

- Load all package metadata
- Resolve dependencies to create transaction (install/remove/update)
- Create lock file
- Download or checkout files from locations in lock file

Nils Adermann
@naderman

Satis

- Static File Generator
- Big config file of all packages
- Archive creation for downloads possible
- No hooks to trigger updates
- Not suitable for building further tools or services on top of it

- Considerably cost to setup & maintain

Nils Adermann
@naderman

Private Packagist

- Your own Composer repository done right
- SaaS or on-premises - https://packagist.com

- Easy setup
- Integration with GitHub, Gitlab, Bitbucket

- Authentication
- Permission Management

- Foundation for future functionality to simplify dependency management

https://packagist.com

Nils Adermann
@naderman

Load package metadata?

- Composer Repositories
- packagist.org
- Satis
- Private Packagist

- VCS repositories
- Package repositories

Nils Adermann
@naderman

Package Repository

"repositories": [
 {
 "type": "package",
 "package": {
 "name": "vendor/package",
 "version": "1.0.0",
 "dist": {
 "url": "http://example.org/package.zip",
 "type": "zip"
 },
 "source": {
 "url": "git://example.org/package.git",
 "type": "git",
 "reference": "tag name, branch name or commit hash"
 }
 }
 }
],
"require": {
 "vendor/package": "1.0.0"
}

Nils Adermann
@naderman

VCS Repository

"repositories": [
 {
 "type": "vcs",
 "url": "git://example.org/MyRepo.git"
 }
]

- Information is inferred from composer.json files in tags & branches
- dist download URLs only for known hosts, e.g. github, bitbucket, gitlab

Nils Adermann
@naderman

Composer Repository

"repositories": [
 {
 "type": "composer",
 "url": "https://satis.example.org/"
 },
 {
 "type": "composer",
 "url": "https://repo.packagist.com/my-org"
 },
 {
 "packagist.org": false
 }
]

Nils Adermann
@naderman

Composer Repository: Satis

packages.json:
{
 packages: {
 “seld/private-test”: {
 “dev-master”: {
 name: "seld/PRivate-test",
 version: "dev-master",
 version_normalized: "9999999-dev",
 source: {

 },
 dist: {

 },
 require: {
 php: ">=5.3.0",
 ...
 }
 }
}

Nils Adermann
@naderman

Composer Repository: packagist.org

packages.json:
{
 packages: [],
 notify: "/downloads/%package%",
 notify-batch: "/downloads/",
 providers-url: "/p/%package%$%hash%.json",
 search: "/search.json?q=%query%&type=%type%",
 provider-includes: {
 p/provider-2013$%hash%.json: {
 sha256: "eb67fda529996db6fac4647ff46cf41bb31065536e1164d0e75f911d160f6b9f"
 },
 ...
 p/provider-archived$%hash%.json: {
 sha256: "444a8f22af4bc0e2ac0c09eda1f5edc63158a16e9d754100d7f774b930a38ae6"
 },
 p/provider-latest$%hash%.json: {
 sha256: "b0e0065f1e36f061b9fd2bbb096e7986321421f9eedc3d5e68dc4780d7295c33"
 }
 }
}

Nils Adermann
@naderman

Composer Repository: Private Packagist

packages.json:
{
 packages: {
 “seld/private-test”: {
 “dev-master”: {
 name: "seld/PRivate-test",
 ...
 }
 providers-lazy-url: "/myorg/p/%package%.json",
 mirrors: [
 {
 dist-url:
"https://repo.packagist.com/packagist-nosync/dists/%package%/%version%/%reference%.%type%",
 preferred: true
 }
]
}

Composer with Private Dependencies

composer.json

require:
 foo/bar: ^1.3

composer
update

composer.lock

foo/bar: 1.3.4
foo/dep: 1.2.1

composer
install

vendor/foo/
 bar/Bar.php
 bar/Bax.php
 dep/Dep.php
 dep/Doo.php

foo-bar.git
foo-dep.git

git clone git clone

Composer with Private Dependencies: Private Packagist

composer.json

require:
 foo/bar: ^1.3

git clone

composer.lock

foo/bar: 1.3.4
foo/dep: 1.2.1

composer
install

vendor/foo/
 bar/Bar.php
 bar/Bax.php
 dep/Dep.php
 dep/Doo.php

foo-bar.git
foo-dep.git

packages.json
foo-bar-1.3.4.zip
foo-dep-1.2.1.zip

composer
update

https, unzip

js
on

 h
ttp

s

Nils Adermann
@naderman

Risk Analysis: Availability

Affects Assembly

Examples:

- Open Source Library deleted
- Payment Service unavailable
- EU VATId Service out of order
- Jenkins not accessible

Nils Adermann
@naderman

Risk Reduction: Availability

- Software is available when you have a copy
- composer cache
- Forks
- Private Packagist or Satis

Composer with Open Source Dependencies

composer.json

require:
 foo/bar: ^1.3

composer
update

composer.lock

foo/bar: 1.3.4
foo/dep: 1.2.1

composer
install

vendor/foo/
 bar/Bar.php
 bar/Bax.php
 dep/Dep.php
 dep/Doo.php

foo-bar.git
foo-dep.git

json https
git clone

packages.json

Composer with Open Source Dependencies: Private Packagist

composer.json

require:
 foo/bar: ^1.3

json https

composer.lock

foo/bar: 1.3.4
foo/dep: 1.2.1

composer
install

vendor/foo/
 bar/Bar.php
 bar/Bax.php
 dep/Dep.php
 dep/Doo.php

foo/bar
foo/dep

packages.json
foo-bar-1.3.4.zip
foo-dep-1.2.1.zip

composer
update

https, unzip

js
on

 h
ttp

s
foo-bar.git
foo-dep.git

git clone

Nils Adermann
@naderman

Downloading files from the lock file

{
 "content-hash": "bb557b05609c879265a30bc052ef77e4",
 "packages": [
 {
 "name": "aws/aws-sdk-php",
 "version": "3.25.6",
 "source": {
 "type": "git",
 "url": "https://github.com/aws/aws-sdk-php.git",
 "reference": "fe98140a4811abbe9104477b167dc3c7f9a8391b"
 },
 "dist": {
 "type": "zip",
 "url": "https://api.github.com/repos/aws/aws-sdk-php/zipball/fe...",
 "reference": "fe98140a4811abbe9104477b167dc3c7f9a8391b",
 },
 "require": {
 "guzzlehttp/guzzle": "^5.3.1|^6.2.1",

Nils Adermann
@naderman

Downloading files from the lock file with Private Packagist

 "packages": [
 {
 "name": "aws/aws-sdk-php",
 "version": "3.25.6",
 "source": {
 "url": "https://github.com/aws/aws-sdk-php.git",
 ...
 },
 "dist": {
 "type": "zip",
 "url": "https://api.github.com/repos/aws/aws-sdk-php/zipball/...",
 "reference": "fe98140a4811abbe9104477b167dc3c7f9a8391b",
 "mirrors": [
 {
 "url":
"https://repo.packagist.com/phpbb/dists/%package%/%version%/%reference%.%type%",
 "preferred": true
 }
]
 }

Nils Adermann
@naderman

Risk Reduction: (New) Dependencies

Quality Criteria for software libraries (and services)

- Number of Maintainers / Developers
- Actively Developed?
- How many users?

- Packagist shows installation count

- Where is a library being installed from?
- GitHub, self-hosted svn server? -> Availability

- Alternatives / how easy to replace? Complexity?
- Could you take over maintenance?

Nils Adermann
@naderman

Risk Reduction: Compatibility

Semantic Versioning (Semver) promises Compatibility

x.y.z

- Must be used consistently
- Only valuable if BC/Compatibility promise formalized

- See http://symfony.com/doc/current/contributing/code/bc.html

- Otherwise choose narrower Version Constraints, check more frequently
- e.g. ~1.2.3 instead of ^1.2.3

http://symfony.com/doc/current/contributing/code/bc.html

Nils Adermann
@naderman

Risk Reduction: Compatibility

- Automated
- Tests
- Static Analysis

- Manual
- Read Changelogs (and write them!)
- Experience which libraries break BC

Nils Adermann
@naderman

Risk Minimization: Compliance / Legal

- Affects Change Management
- Example

- Viral Copy-Left License not compatible with proprietary product

- composer licenses
- Private Packagist License Review

Nils Adermann
@naderman

Assessing & Managing Risk

- Formulate a Plan B
- Identify problems which are probable and which have great effects

- Dependencies are great! They can save tons of money and time
- Only spend resources on reducing risk until the risk is acceptable

- Private Packagist can help you manage and reduce these risks by being
the one central place for all your third party code

Nils Adermann
@naderman

How is Private Packagist helping?

- Faster and more reliable composer operations
- Work with private dependencies more efficiently

- Automatic synchronization of packages, teams, users, permissions
- Authentication Tokens

- One central place for all your dependencies
Improved understanding of and control over open-source usage

- Statistics and references between internal code and open-source code
- License review

- Much more to come!

E-Mail: n.adermann@packagist.com
Twitter: @naderman

Thank you!

https://packagist.com
10% off first 12 months with code t3dd17

Questions / Feedback?

mailto:n.adermann@packagist.com
http://twitter.com/naderman
https://packagist.com
https://packagist.com

