imagine 2018 [0) Magento

i LEAD
THE
CHARGE

g
Developing and
Deploying Magento
with Composer:
Best Practices

r

Nils Adermann - @naderman - n.adermann@packagist.com imagi"gﬁgﬁ

.|

PRIVATE
PACKAGIST

imagine 2018
() Magento

PRIVATE
PACKAGIST

- < <S>
Metadata Code
| - g
composer composer
‘ update install
= o o
fhm ks

g |
composer.json =l

+ composer

require

x CoOmposer
remove

r_

0080800

imagine 2018
@Magenlo

s B

e Package Repositories Ry

Third Parties

- Packagist - https://packagist.org
- Magento Marketplace - https://marketplace.magento.com
- Individual vendors’ repositories

Private Packages

- Any Git/svn/Mercurial/... repository
- GitHub, Bitbucket, GitLab, ...
- Private Packagist - https://packagist.com

imagine 2018
@Magenlo

https://packagist.org
https://marketplace.magento.com
https://packagist.com

s B

= Leveraging Open-Source Packages i

- Nearly 200k packages on packagist.org
- Many useful well tested, maintained and secure packages
- Large amounts of unmaintained, insecure, broken or poorly
working PHP code

@ Versions available @ Packages

1000.0K
800.0K
600.0K

400.0K

200.0K /

7 - -
imagine 2018
2011-09 2012-10 2014-05 2015-12 2017-072018-03 @ Magento

s B

= Leveraging Open-Source Packages

PACKAGIST

- Evaluate packages every time before you write code yourself

- Selection criteria
- Quality of documentation (changelogs?)
- Development activity (commits, issues, PRS)
- Number of maintainers
- Installation counts, GitHub stars
- Complexity

- It's all trade-offs - no golden rule

imagine 2018

(0) Magento

s B

= Magento Marketplace el

- Apply similar criteria as for Open-Source packages

- Additional factors to consider for choosing packages
- Cost
- Licenses
- Reviews / Ratings
- Extension Quality Program

imagine 2018
@Magen(o

.|

= Using your private code with Composer

PACKAGIST

"repositories": [
{"type": "path", "url": "../core"}
1,
"repositories": [
{"type": "vcs",
"url": "https://github.com/naderman/symfony" }
1,
"repositories": [
{"type": "composer",
"url": "https://repo.packagist.com/my-org/" }

imagine 2018

I'[D Magento'

-_
Development
Environment
Best Practices

imagine 2018
() Magento

s B

= Create-project instead of cloning i

composer create-project --repository-
url=https://repo.magento.com/ magento/project-
community-edition <path>

- composer.json will have the correct contents
- different from forking the community edition

magento/project-community-edition is a metapackage
- no code
- defines dependencies on a number of other packages

Only clone if you're trying to contribute to a repository directly
imagine 2018

(0) Magento

Exact Match:

Wildcard Range:
Hyphen Range:

(Unbounded Range:
Bad!

Next Significant Release

Caret/Semver Operator

s B

= Managing Updates: Constraints pEare
1.0.0 1.2.3-beta2 dev-master
1.0.* 2.%
1.0-2.0 1.0.0-2.1.0
>=1.0.0<2.1 >=1.0.0<=2.1.0
>=1.0)
~1.2 ~1.2.3
>=1.2.0<2.0.0 >=1.2.3<1.3.0
1.2 n1.2.3 Best Choice for Libs
>=1.2.0<2.0.0 >=1.2.3<2.0.0
imagine 2018

Operators: ““ AND, “||” OR

(Y Magento

= Managing Updates: Stabilities

Order
dev -> alpha -> beta -> RC -> stable
Automatically from tags

1.2.3 -> stable

1.3.0-beta3 -> peta

Automatically from branches

Branch -> Version (Stability)
2.0 -> 2.0.x-dev (dev)
master -> dev-master (dev)
myfeature -> dev-myfeature (dev)
Choosing

“foo/bar”: “1.3.*@beta”
“foo/bar”: “2.0.x-dev”

“minimum-stability”: “alpha”

.|

PRIVATE
PACKAGIST

imagine 2018
(Y Magento

= Managing Updates: Semantic Versioning

X.y.Z
(BC-break).(new functionality).(bug fix)

https://semver.org/

imagine 2018
@Magen(o

https://semver.org/

s B

= Managing Updates: Semantic Versioning ...

Promise of Compatibility

XY.Z

- Must be used consistently
Dare to increment X!

- Only valuable if BC/Compatibility promise formalized
http://devdocs.magento.com/quides/v2.0/contributor-
guide/backward-compatible-development/
http://symfony.com/doc/current/contributing/code/bc.html
Document in Changelog

imagine 2018

() Magento

http://devdocs.magento.com/guides/v2.0/contributor-guide/backward-compatible-development/
http://symfony.com/doc/current/contributing/code/bc.html

= Updating

composer update

no isolation of problems unless run very frequently

composer update <package...>

explicit conscious updates

composer update --dry-run [<package...>]

Understanding and preparing effects of updates

Read CHANGELOGs
composer outdated

.|

PRIVATE
PACKAGIST

imagine 2018
(Y Magento

= Managing Updates: Unexpected results “.

PACKAGIST

- composer why [--tree] foo/bar
mydep/here 1.2.3 requires foo/bar (71.0.3)

- composer why-not [--tree] foo/bar 1.2

foo/bar 1.2.3 requires php (>=7.1.0 but 5.6.3 1is
installed)

imagine 2018

() Magento

{

“name”: “zebra/zebra”,

“require”: {

“‘horse/horse”: “*1.0"

“name”: “giraffe/giraffe”,

“require”: {
“duck/duck”:

\\/\1-. ()II } }

= Managing Updates: Partial Updates

I8

.|

PRIVATE
PACKAGIST

imagine 2018
@Magen(o

{

“name”: “horse/horse”,

“require”:

“giraffe/giraffe”:

“name”: “duck/duck”,

“require”:

{

{}}

= Managing Updates: Partial Updates

\\/\1-. ()I/ } }

.|

PRIVATE
PACKAGIST

imagine 2018
@Magen(o

{

“name”: “my-project”,

“require”: {

Managing Updates: Partial Updates

“zebra/zebra”: “*1.0”,

“giraffe/giraffe”:

\\ﬁ\l-. C)/I

.|

PRIVATE
PACKAGIST

imagine 2018
@Magen(o

-_I\/Ianaging Updates: Partial Updates

.

Project

\ 4

zebra 1.0

\ 4

horse 1.0

A 4

giraffe 1.0

\ 4

Now each package releases 1.1

duck 1.0

.|

PRIVATE
PACKAGIST

imagine 2018
(Y Magento

._I\/Ianaging Updates: Partial Updates ,.

PRIVATE
PACKAGIST

[\
Project =- » horse 1.0
giraffe 1.0 » duck 1.0
$ composer update —--dry-run zebra/zebra

Updating zebra/zebra (1.0 -> 1.1)

imagine 2018

-F) Magento

-_I\/Ianaging Updates: Partial Updates ,,.

PRIVATE

PACKAGIST

N\

A 4

giraffe 1.0

duck 1.0

\ 4

$ composer update —--dry-run zebra/zebra --with-dependencies
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

imagine 2018

-F) Magento

-_I\/Ianaging Updates: Partial Updates ,,.

PRIVATE

PACKAGIST

)\
Project =- » horse 1.0
» duck 1.0
$ composer update —--dry-run zebra/zebra giraffe/giraffe

Updating zebra/zebra (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)

imagine 2018

-F) Magento

._I\/Ianaging Updates: Partial Updates ,,.

PRIVATE
PACKAGIST

N\
Project

S composer update zebra/zebra giraffe/giraffe --with-dependencies
Updating duck/duck (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

imagine 2018

-P @) Magento

s B

= Managing Updates: The Lock File pEare

- Contents
- All dependencies including transitive dependencies

- Exact version for every package
- Download URLs (source, dist, mirrors)
- Hashes of files
- Purpose
- Reproducibility across teams, users and servers
- Isolation of bug reports to code vs. potential dependency breaks
- Transparency through explicit updating process

imagine 2018
(0 Magento

Commit The Lock File

Every composer install without a lock file is a
catastrophe waiting to happen

The Lock File Will Conflict

imagine 2018
-F g

._Day 0: “Initial Commit” “.

PRIVATE

PACKAGIST

Project ’ master Project W dna-upgrade
composer.lock composer.lock
v - 7ebra 10 v - zebra 1.0
zebra 1.0 giraffe 1.0 | _giraffe 1.0 zebra 1.0 giraffe 1.0 -giraffe 1.0

= imagine 2018

P () Magento

-_Week 2: Strange new zebras require duck ,.

PRIVATE
PACKAGIST

Project ’ master Project W dna-upgrade
composer.lock composer.lock
- zebra 1.1 y - zebra 1.0
giraffe 1.0 | _giraffe 1.0 zebra 1.0 giraffe 1.0 -giraffe 1.0
- duck 1.0
= imagine 2018

F) Magento

W i 5
b b

W "' ,

= e
R -

T =
———

-_Week 4; Giraffe evolves, requires duck 2.0,.

PRIVATE
PACKAGIST

Project ’ master Project W dna-upgrade
composer.lock composer.lock
¥ - Zebra 1.1 — - zebra 1.0
zebra 1.1 giraffe 1.0 | _giraffe 1.0 zebra 1.0 - giraffe 1.2
- duck 1.0 - duck 2.0
A 4
duck 1.0
= imagine 2018

F () Magento

._Text-based Merge .,.

PRIVATE

PACKAGIST

Project ’ master Merge results in invalid dependencies

composer.lock

- zebra 1.1
zebral.l giraffe 1.2 | _ giraffe 1.2
- duck 1.0
- duck 2.0

imagine 2018

-F) Magento

-_Reset composer.lock

git checkout <refspec> -- composer.lock
git checkout master -- composer.lock

Project W

.|

PRIVATE
PACKAGIST

dna-upgrade

composer.lock
- zebra 1.1

giraffe 1.0 - giraffe 1.0

duck 1.0

- duck 1.0

imagine 2018
(0) Magento

-_Apply the update again “.

PRIVATE
PACKAGIST

Project W master
composer update giraffe composer.lock
i - Y - zebra 11
--with-dependencies .
zebral.l - giraffe 1.2
- duck 2.0

imagine 2018
-P Q) Magento

s B

= Resolving composer.lock merge conflicts ...

- composer.lock cannot be merged without conflicts
- contains hash over relevant composer.json values

- git checkout <refspec> -- composer.lock
- git checkout master -- composer.lock

- Repeat: composer update <list of deps>
- Store parameters in commit message
- Separate commit for the lock file update

imagine 2018
(Y Magento

s B

Publishin K
= ublishing packages

- composer validate
- Will inform you about problems like missing fields and warn about
problematic choices like unbound version constraints

- Do not publish multiple packages under the same name, e.g.

CE/EE
- Names must be unique

imagine 2018
(Y Magento

s B

= Continuous Integration for Packages i

- Multiple runs
- composer install from lock file
- composer update for latest deps
- composer update --prefer-lowest --prefer-stable

for oldest (stable) deps

- Potentially multiple composer.json files with different platform

configurations
- COMPOSER=composer-customerl.json php composer.phar update
- COMPOSER=composer-customerl.json php composer.phar install
- Takes away benefit of “composer install” just working on any PHP

project, so avoid this except for testing

imagine 2018

(0 Magento

s B

Development Tool
= evelopme 0o0ls

- require-dev in composer.json

- These packages won’t be installed if you run
composer install --no-dev

- Use for testing tools, code analysis tools, etc.

— -—--prefer-source
- Clone repositories instead of downloading and extracting zip files
- Default behavior for dev versions
- Allows you to push changes back into dependency repos

imagine 2018
(Y Magento

.
Deployment
Best Practices
r

imagine 2018
() Magento

m What properties should deployment have? I|

- Unreliable or slow deployment process
- You will be scared to deploy
- You will not enjoy deploying

- Consequence: You will not deploy often

- Infrequent deploys increase risks
You will not be able to spot problems as quickly
Problems will fester over time
- Vicious Cycle
- Reliability and speed are key to breaking it

imagine 2018

(0) Magento

s CoOmposer install performance

--prefer-dist

Will always download zip files over cloning repositories

Store ~/ . composer/cache/ between builds

How depends on CI product/setup you use

.|

PRIVATE
PACKAGIST

imagine 2018
@Magen(o

s B

= Autoloader Optimization

PACKAGIST

- composer install --optimize-autoloader

- composer dump-autoload --optimize

- composer install --optimize-autoloader --classmap-authoritative
- composer dump-autoload --optimize --classmap-authoritative

- composer install --optimize-autoloader --apcu-autoloader
- composer dump-autoload --optimize --apcu

https://getcomposer.org/doc/articles/autoloader-optimization.md

imagine 2018
@Magen(o

https://getcomposer.org/doc/articles/autoloader-optimization.md

s B

= Reduce dependence on external services ...

- Build process (move more into this)
- Install dependencies (Composer, npm, ...)
- Generate assets (Javascript, CSS, ...))
- Create an artifact with everything in it

- Deployment process (make this as small as possible)
- Move the artifact to your production machine
sftp, rsync, apt-get install, ...
- Machine dependent configuration
- Database modifications
- Start using new version
imagine 2018

(0 Magento

Never Deploy Without

composer.lock

s B

= Reduce dependence on external services ...

- Composer install loads packages from URLSs in composer.lock

- Packagist.org is metadata only
- Open-source dependencies could come from anywhere

- Solutions to unavailability
- Composer cache in ~/.composer/cache
Unreliable, not intended for this use
- Fork every dependency
huge maintenance burden
- Your own Composer repository mirroring all packages
e.g. Private Packagist

imagine 2018
(0 Magento

W Summary ,.

PRIVATE
PACKAGIST

Development Deployment

- Make a checklist for new dependencies - composer install --prefer-dist --

- composer create-project optimize-autoloader —no-dev

- SemVer: Don'’t be afraid to increase the - Use a highly available Composer
major version repository (Private Packagist)

- Formalize BC promises for users of - Dep|oy more frequenﬂy
your libraries - Focus on reliability and speed of your

- composer update [--dry-run] <package> deployment process

- git checkout <branch> -- composer.lock - Deploying should not be scary

- replay composer update
- Document changes to dependencies

Nils Adermann - @naderman - n.adermann@packagist.com imagine 2018

F) Magento

= When Deployment goes wrong

Your site may go down

You lose orders

You lose customers

Customer support has more work

Developers stressed to get site back up and running
- More likely to make further mistakes

.|

PRIVATE
PACKAGIST

imagine 2018
(Y Magento

s B

= Typical Deployment Problems

PACKAGIST

- Manual Error
- Bugs in deployment scripts result in partial deploys
- Inconsistent state across multiple servers

- External services used in the process fail or timeout
- Required dependencies unavailable for download

- Site unavailable or showing errors during deployment process

imagine 2018

(0) Magento

o Improving your Deployment Process

Iterative Improvements
- Don’t have to happen in the presented order

Documenting the current process
Start automating individual steps

Change your attitude
- Deploy more often
even though it’s scary, it will make deployment less scary
to really feel what the pain points are
- Management buy-in required, this will hurt at first

.|

PRIVATE
PACKAGIST

imagine 2018

(0) Magento

o Improving your Deployment Process

Continuous Integration
- Yes PHP projects have a build process

Staging Environment
- As close to real production system as possible

Full Automation
- Configuration Management

Continuous Deployment

.|

PRIVATE
PACKAGIST

imagine 2018

(0) Magento

s B

= No-Downtime Database Migrations i

- Adding database schema element

1. Add schema element
2. Update code to fill and then use the new column/table/index/...

- Removing database schema element
1. Update code to stop accessing/using the column/table/index/...
2. Remove schema element

imagine 2018
(Y Magento

s B

= No-Downtime Database Migrations i

- Deployment order (covers adding elements)
1. Migrate Database Schema
2. Switch Servers to use new code

- Removing an element requires deploying twice

1. Deploy without database change
2. Deploy only the database change with unmodified code

- Migration must keep database operational
MySQL Online DDL https://dev.mysql.com/doc/refman/5.7/en/innodb-create-index-
overview.html

imagine 2018
(Y Magento

https://dev.mysql.com/doc/refman/5.7/en/innodb-create-index-overview.html

= Deploying with Symlinks

/var/www/current -> /var/www/20180321
/var/www/20180310
/var/www/20180321
/var/www/20180418

ln -sfT /var/www/20180418 /var/www/current

Problems
- APC/Opcache do not notice change
- file is still at /varlwww/current/index.php
- Requests which are executed while the link changes
- Some code from old version, some from new version

.|

PRIVATE
PACKAGIST

imagine 2018

() Magento

s B

= Deploying with Symlinks

PACKAGIST

- Solutions
Restarting fpm on deploy
- Causes downtime
- cachetool to clear apc/opcache
- https://github.com/gordalina/cachetool
- Nginx: change $document rootto $realpath root
- Resolves symlink before passing path to PHP
=> No risk of requests using partial code from new & old versions

- Apache: https://github.com/etsy/mod_realdoc

- Read https://codeascraft.com/2013/07/01/atomic-deploys-at-etsy/
(by Rasmus Lerdorf)

imagine 2018
@Magen(o

https://github.com/gordalina/cachetool
https://github.com/etsy/mod_realdoc
https://codeascraft.com/2013/07/01/atomic-deploys-at-etsy/

= Blue-Green Deployments

Two identical sets of production machines: BLUE & GREEN

Load balancer sends traffic to one system (BLUE)

Deployment process

Set everything up on unused machines (GREEN)
Test functionality on GREEN system

Switch all traffic from load balancer to GREEN system
BLUE system is now idle, can be used for next deploy

.|

PRIVATE
PACKAGIST

imagine 2018
(Y Magento

= Blue-Green Deployments

Web App
Server Server

Router

lllustration by Martin Fowler https://martinfowler.com/bliki/BlueGreenDeployment.html

.|

PRIVATE
PACKAGIST

imagine 2018
@Magen(o

https://martinfowler.com/bliki/BlueGreenDeployment.html

s B

= Blue-Green Deployments i

- Advantages
- No risk of stale cache contents
- None of the symlink issues
- Deployment won’t impact live production system
- Easy rollback (just point the load balancer back)

- Downsides
- Double the hardware requirements
- Long running processes may be running on non-live hardware
- Doesn’t simplify database migrations

imagine 2018
(Y Magento

= Use a PaaS (Platform as a Service) / Cloud
provider which handles this for you

imagine 2018
@Mag eeeee

