

Developing and

Deploying Magento

with Composer:

Best Practices

Nils Adermann - @naderman - n.adermann@packagist.com

Package Repositories

Third Parties

- Packagist - https://packagist.org

- Magento Marketplace - https://marketplace.magento.com

- Individual vendors’ repositories

Private Packages

- Any Git/svn/Mercurial/… repository

- GitHub, Bitbucket, GitLab, …

- Private Packagist - https://packagist.com

https://packagist.org
https://marketplace.magento.com
https://packagist.com

Leveraging Open-Source Packages

- Nearly 200k packages on packagist.org
- Many useful well tested, maintained and secure packages

- Large amounts of unmaintained, insecure, broken or poorly

working PHP code

Leveraging Open-Source Packages

- Evaluate packages every time before you write code yourself

- Selection criteria
- Quality of documentation (changelogs?)

- Development activity (commits, issues, PRs)

- Number of maintainers

- Installation counts, GitHub stars

- Complexity

- It’s all trade-offs - no golden rule

Magento Marketplace

- Apply similar criteria as for Open-Source packages

- Additional factors to consider for choosing packages
- Cost

- Licenses

- Reviews / Ratings

- Extension Quality Program

Using your private code with Composer

- "repositories": [

{"type": "path", "url": "../core"}

],

- "repositories": [

{"type": "vcs",

"url": "https://github.com/naderman/symfony" }

],

- "repositories": [

{"type": "composer",

"url": "https://repo.packagist.com/my-org/" }

],

Development

Environment

Best Practices

Create-project instead of cloning

- composer create-project --repository-

url=https://repo.magento.com/ magento/project-

community-edition <path>

- composer.json will have the correct contents

- different from forking the community edition

- magento/project-community-edition is a metapackage

- no code

- defines dependencies on a number of other packages

- Only clone if you’re trying to contribute to a repository directly

Managing Updates: Constraints

- Exact Match: 1.0.0 1.2.3-beta2 dev-master

- Wildcard Range: 1.0.* 2.*

- Hyphen Range: 1.0-2.0 1.0.0 - 2.1.0

>=1.0.0 <2.1 >=1.0.0 <=2.1.0

- (Unbounded Range: >= 1.0)

Bad!

- Next Significant Release ~1.2 ~1.2.3

>=1.2.0 <2.0.0 >=1.2.3 <1.3.0

- Caret/Semver Operator ^1.2 ^1.2.3 Best Choice for Libs

>=1.2.0 <2.0.0 >=1.2.3 <2.0.0

Operators: “ “ AND, “||” OR

Managing Updates: Stabilities

- Order

dev -> alpha -> beta -> RC -> stable

- Automatically from tags

1.2.3 -> stable

1.3.0-beta3 -> beta

- Automatically from branches

Branch -> Version (Stability)

2.0 -> 2.0.x-dev (dev)

master -> dev-master (dev)

myfeature -> dev-myfeature (dev)

- Choosing

“foo/bar”: “1.3.*@beta”

“foo/bar”: “2.0.x-dev”

“minimum-stability”: “alpha”

Managing Updates: Semantic Versioning

x.y.z
(BC-break).(new functionality).(bug fix)

https://semver.org/

https://semver.org/

Managing Updates: Semantic Versioning

Promise of Compatibility

X.Y.Z

- Must be used consistently

Dare to increment X!

- Only valuable if BC/Compatibility promise formalized

- http://devdocs.magento.com/guides/v2.0/contributor-

guide/backward-compatible-development/

- http://symfony.com/doc/current/contributing/code/bc.html

- Document in Changelog

http://devdocs.magento.com/guides/v2.0/contributor-guide/backward-compatible-development/
http://symfony.com/doc/current/contributing/code/bc.html

Updating

- composer update

- no isolation of problems unless run very frequently

- composer update <package...>

- explicit conscious updates

- composer update --dry-run [<package...>]

- Understanding and preparing effects of updates

- Read CHANGELOGs
- composer outdated

Managing Updates: Unexpected results

- composer why [--tree] foo/bar

mydep/here 1.2.3 requires foo/bar (^1.0.3)

- composer why-not [--tree] foo/bar ^1.2

foo/bar 1.2.3 requires php (>=7.1.0 but 5.6.3 is

installed)

Managing Updates: Partial Updates

{ “name”: “zebra/zebra”,

“require”: {

“horse/horse”: “^1.0” }}

{ “name”: “giraffe/giraffe”,

“require”: {

“duck/duck”: “^1.0” }}

Managing Updates: Partial Updates

{ “name”: “horse/horse”,

“require”: {

“giraffe/giraffe”: “^1.0” }}

{ “name”: “duck/duck”,

“require”: {}}

Managing Updates: Partial Updates

{

“name”: “my-project”,

“require”: {

“zebra/zebra”: “^1.0”,

“giraffe/giraffe”: “^1.0”

}

}

Managing Updates: Partial Updates

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0

Now each package releases 1.1

Managing Updates: Partial Updates

Project zebra 1.1

giraffe 1.0

horse 1.0

duck 1.0

$ composer update --dry-run zebra/zebra

Updating zebra/zebra (1.0 -> 1.1)

Managing Updates: Partial Updates

Project zebra 1.1

giraffe 1.0

horse 1.1

duck 1.0

$ composer update --dry-run zebra/zebra --with-dependencies

Updating horse/horse (1.0 -> 1.1)

Updating zebra/zebra (1.0 -> 1.1)

Managing Updates: Partial Updates

Project zebra 1.1

giraffe 1.1

horse 1.0

duck 1.0

$ composer update --dry-run zebra/zebra giraffe/giraffe

Updating zebra/zebra (1.0 -> 1.1)

Updating giraffe/giraffe (1.0 -> 1.1)

Managing Updates: Partial Updates

Project zebra 1.1

giraffe 1.1

horse 1.1

duck 1.1

$ composer update zebra/zebra giraffe/giraffe --with-dependencies

Updating duck/duck (1.0 -> 1.1)

Updating giraffe/giraffe (1.0 -> 1.1)

Updating horse/horse (1.0 -> 1.1)

Updating zebra/zebra (1.0 -> 1.1)

Managing Updates: The Lock File

- Contents

- All dependencies including transitive dependencies

- Exact version for every package

- Download URLs (source, dist, mirrors)

- Hashes of files

- Purpose

- Reproducibility across teams, users and servers

- Isolation of bug reports to code vs. potential dependency breaks

- Transparency through explicit updating process

Commit The Lock File
Every composer install without a lock file is a

catastrophe waiting to happen

The Lock File Will Conflict

Day 0: “Initial Commit”

Project

zebra 1.0 giraffe 1.0

Project

zebra 1.0 giraffe 1.0

master

composer.lock

- zebra 1.0

- giraffe 1.0

dna-upgrade

composer.lock

- zebra 1.0

- giraffe 1.0

Week 2: Strange new zebras require duck

Project

zebra 1.1 giraffe 1.0

Project

zebra 1.0 giraffe 1.0

duck 1.0

master

composer.lock

- zebra 1.1

- giraffe 1.0

- duck 1.0

dna-upgrade

composer.lock

- zebra 1.0

- giraffe 1.0

Week 3: Duck 2.0

Week 4: Giraffe evolves, requires duck 2.0

Project

zebra 1.1 giraffe 1.0

Project

zebra 1.0 giraffe 1.2

duck 1.0 duck 2.0

master

composer.lock

- zebra 1.1

- giraffe 1.0

- duck 1.0

dna-upgrade

composer.lock

- zebra 1.0

- giraffe 1.2

- duck 2.0

Text-based Merge

Project

zebra 1.1 giraffe 1.2

duck 1.0 duck 2.0

Merge results in invalid dependenciesmaster

composer.lock

- zebra 1.1

- giraffe 1.2

- duck 1.0

- duck 2.0

Reset composer.lock

Project

giraffe 1.0

dna-upgrade

composer.lock

- zebra 1.1

- giraffe 1.0

- duck 1.0
zebra 1.1

duck 1.0

git checkout <refspec> -- composer.lock

git checkout master -- composer.lock

Apply the update again

Project

zebra 1.1 giraffe 1.2

duck 2.0

composer update giraffe

--with-dependencies

master

composer.lock

- zebra 1.1

- giraffe 1.2

- duck 2.0

Resolving composer.lock merge conflicts

- composer.lock cannot be merged without conflicts
- contains hash over relevant composer.json values

- git checkout <refspec> -- composer.lock

- git checkout master -- composer.lock

- Repeat: composer update <list of deps>
- Store parameters in commit message

- Separate commit for the lock file update

Publishing packages

- composer validate

- Will inform you about problems like missing fields and warn about

problematic choices like unbound version constraints

- Do not publish multiple packages under the same name, e.g.

CE/EE
- Names must be unique

Continuous Integration for Packages

- Multiple runs
- composer install from lock file

- composer update for latest deps

- composer update --prefer-lowest --prefer-stable

for oldest (stable) deps

- Potentially multiple composer.json files with different platform

configurations
- COMPOSER=composer-customer1.json php composer.phar update

- COMPOSER=composer-customer1.json php composer.phar install

- Takes away benefit of “composer install” just working on any PHP

project, so avoid this except for testing

Development Tools

- require-dev in composer.json

- These packages won’t be installed if you run
composer install --no-dev

- Use for testing tools, code analysis tools, etc.

- --prefer-source

- Clone repositories instead of downloading and extracting zip files

- Default behavior for dev versions

- Allows you to push changes back into dependency repos

Deployment

Best Practices

What properties should deployment have?

- Unreliable or slow deployment process

- You will be scared to deploy

- You will not enjoy deploying

- Consequence: You will not deploy often

- Infrequent deploys increase risks

- You will not be able to spot problems as quickly

- Problems will fester over time

- Vicious Cycle

- Reliability and speed are key to breaking it

- --prefer-dist

- Will always download zip files over cloning repositories

- Store ~/.composer/cache/ between builds

- How depends on CI product/setup you use

Composer install performance

Autoloader Optimization

- composer install --optimize-autoloader

- composer dump-autoload --optimize

- composer install --optimize-autoloader --classmap-authoritative

- composer dump-autoload --optimize --classmap-authoritative

- composer install --optimize-autoloader --apcu-autoloader

- composer dump-autoload --optimize --apcu

https://getcomposer.org/doc/articles/autoloader-optimization.md

https://getcomposer.org/doc/articles/autoloader-optimization.md

Reduce dependence on external services

- Build process (move more into this)
- Install dependencies (Composer, npm, …)

- Generate assets (Javascript, CSS, ...)

- Create an artifact with everything in it

- Deployment process (make this as small as possible)
- Move the artifact to your production machine

- sftp, rsync, apt-get install, ...

- Machine dependent configuration

- Database modifications

- Start using new version

Never Deploy Without

composer.lock

Reduce dependence on external services

- Composer install loads packages from URLs in composer.lock
- Packagist.org is metadata only

- Open-source dependencies could come from anywhere

- Solutions to unavailability
- Composer cache in ~/.composer/cache

- Unreliable, not intended for this use

- Fork every dependency
- huge maintenance burden

- Your own Composer repository mirroring all packages
- e.g. Private Packagist

Summary

Development

- Make a checklist for new dependencies

- composer create-project

- SemVer: Don’t be afraid to increase the

major version

- Formalize BC promises for users of

your libraries

- composer update [--dry-run] <package>

- git checkout <branch> -- composer.lock

- replay composer update

- Document changes to dependencies

Deployment

- composer install --prefer-dist --

optimize-autoloader –no-dev

- Use a highly available Composer

repository (Private Packagist)

- Deploy more frequently

- Focus on reliability and speed of your

deployment process

- Deploying should not be scary

Nils Adermann - @naderman - n.adermann@packagist.com

When Deployment goes wrong

- Your site may go down

- You lose orders

- You lose customers

- Customer support has more work

- Developers stressed to get site back up and running

- More likely to make further mistakes

Typical Deployment Problems

- Manual Error

- Bugs in deployment scripts result in partial deploys

- Inconsistent state across multiple servers

- External services used in the process fail or timeout

- Required dependencies unavailable for download

- Site unavailable or showing errors during deployment process

- Iterative Improvements
- Don’t have to happen in the presented order

- Documenting the current process

- Start automating individual steps

- Change your attitude
- Deploy more often

- even though it’s scary, it will make deployment less scary

- to really feel what the pain points are

- Management buy-in required, this will hurt at first

Improving your Deployment Process

Improving your Deployment Process

- Continuous Integration
- Yes PHP projects have a build process

- Staging Environment
- As close to real production system as possible

- Full Automation
- Configuration Management

- Continuous Deployment

No-Downtime Database Migrations

- Adding database schema element
1. Add schema element

2. Update code to fill and then use the new column/table/index/…

- Removing database schema element
1. Update code to stop accessing/using the column/table/index/…

2. Remove schema element

No-Downtime Database Migrations

- Deployment order (covers adding elements)
1. Migrate Database Schema

2. Switch Servers to use new code

- Removing an element requires deploying twice
1. Deploy without database change

2. Deploy only the database change with unmodified code

- Migration must keep database operational
- MySQL Online DDL https://dev.mysql.com/doc/refman/5.7/en/innodb-create-index-

overview.html

https://dev.mysql.com/doc/refman/5.7/en/innodb-create-index-overview.html

Deploying with Symlinks

- /var/www/current -> /var/www/20180321

/var/www/20180310

/var/www/20180321

/var/www/20180418

- ln -sfT /var/www/20180418 /var/www/current

- Problems
- APC/Opcache do not notice change

- file is still at /var/www/current/index.php

- Requests which are executed while the link changes

- Some code from old version, some from new version

Deploying with Symlinks

- Solutions
- Restarting fpm on deploy

- Causes downtime

- cachetool to clear apc/opcache
- https://github.com/gordalina/cachetool

- Nginx: change $document_root to $realpath_root
- Resolves symlink before passing path to PHP

=> No risk of requests using partial code from new & old versions

- Apache: https://github.com/etsy/mod_realdoc

- Read https://codeascraft.com/2013/07/01/atomic-deploys-at-etsy/

(by Rasmus Lerdorf)

https://github.com/gordalina/cachetool
https://github.com/etsy/mod_realdoc
https://codeascraft.com/2013/07/01/atomic-deploys-at-etsy/

Blue-Green Deployments

- Two identical sets of production machines: BLUE & GREEN

- Load balancer sends traffic to one system (BLUE)

- Deployment process

- Set everything up on unused machines (GREEN)

- Test functionality on GREEN system

- Switch all traffic from load balancer to GREEN system

- BLUE system is now idle, can be used for next deploy

Blue-Green Deployments

Illustration by Martin Fowler https://martinfowler.com/bliki/BlueGreenDeployment.html

https://martinfowler.com/bliki/BlueGreenDeployment.html

Blue-Green Deployments

- Advantages

- No risk of stale cache contents

- None of the symlink issues

- Deployment won’t impact live production system

- Easy rollback (just point the load balancer back)

- Downsides

- Double the hardware requirements

- Long running processes may be running on non-live hardware

- Doesn’t simplify database migrations

Use a PaaS (Platform as a Service) / Cloud

provider which handles this for you

