
Private Packagist
https://packagist.com

Nils Adermann
@naderman

DrupalCon Lille 2023

Composer Behind the Scenes

Why is Composer 2 so much
faster?

Why is Composer 2 so much faster?

● Benchmarks
○ install 30% to 50% faster
○ update 30% to 90% faster & drop in memory usage of 70% to 98%

● Easy answers
○ parallel downloads, making use of HTTP/2 features
○ parallel archive extraction
○ more efficient metadata format

○ doesn’t really explain improvements for update

https://blog.packagist.com/composer-2-0-is-now-available/
https://susi.dev/composer2-perf
https://developers.ibexa.co/blog/benchmarks-of-composer-2.0-vs-1.10
https://metadrop.net/es/articulos/drupal-composer-2

https://blog.packagist.com/composer-2-0-is-now-available/
https://susi.dev/composer2-perf
https://developers.ibexa.co/blog/benchmarks-of-composer-2.0-vs-1.10
https://metadrop.net/es/articulos/drupal-composer-2

Separating update & install - Declaring state over manipulating state

Separating update & install

vendor
symfony/http-foundation: 6.3.5 previous local upgrade attempt

composer.lock
symfony/http-foundation: 5.4.28 old production state

composer.json
symfony/http-foundation: 6.2.* limited upgrade for now, because of 6.3 issues

naderman@saumur:~/projects/composer/test/symfony-http-foundation$ composer update
Loading composer repositories with package information
Updating dependencies
Lock file operations: 0 installs, 1 update, 0 removals
 - Upgrading symfony/http-foundation (v5.4.28 => v6.2.13)
Writing lock file
Installing dependencies from lock file (including require-dev)
Package operations: 3 installs, 1 update, 1 removal
 - Removing symfony/polyfill-php83 (v1.28.0)
 - Downgrading symfony/http-foundation (v6.3.5 => v6.2.13): Extracting archive
Generating autoload files
6 packages you are using are looking for funding.
Use the `composer fund` command to find out more!

composer update: The idea

Dependency Solver

composer.json
requires

packagist.org
packages

composer.lock

download
install

vendor dir
drupal.org
packages

composer update: Reality in Composer 1

updater

composer.json
requires

packagist.org
packages

composer.lock

download
install

vendor dir
drupal.org
packages

platform
packages

composer update: Reality in Composer 1 - aka some terrible ideas

● Idea: Solver only loads what it needs when it gets to that point
○ Solution: Lazy load packages while creating memory representation in solver
○ Problems

■ Solver just waits for same info at a later point
■ Impossible to reduce set of packages before generating dependencies
■ Parallelized network access becomes hard to manage

● Idea: Avoid downloading metadata and packages unnecessarily and protect from loss of
packages

○ Solution: use vendor/ and composer.lock metadata in solver
○ Problems

■ Duplicate metadata
■ Unclear which “version” to use / when to update metadata
■ Confusing results where packages that no longer exist don’t get removed
■ Inconsistent behavior depending on local state

composer update: The idea

Dependency Solver

composer.json
requires

packagist.org
packages

composer.lock

download
install

vendor dir
drupal.org
packages

platform
packages

composer update: Reality in Composer 2

Pool Builder

composer.json
requires

packagist.org
packages

composer.lock

download
install

vendor dir
drupal.org
packages

platform
packages

Dependency Solver

composer update: Reality in Composer 2.2

Pool
Builder

composer.json
requires

packagist.org
packages

composer.lock

download
install

vendor dir
drupal.org
packages

platform
packages

Dependency Solver

Pool
Optimizer

composer update: Reality in Composer 2.2

● Pool
○ Simple array of all package versions to be passed to the Dependency Solver

● Pool Builder collects package metadata from all sources/repositories
○ Takes root composer.json requires into account
○ Avoids loading metadata that is definitely not installable
○ Tries to limit how many versions of a package get loaded by tracking constraints

● Pool Optimizer
○ identifies versions with identical constraints and reduces them into one
○ Shout out to Jason Woods / driskell for two additions based on Drupal projects

■ Filters impossible packages out https://github.com/composer/composer/pull/9620/files
■ Do not load replaced targets https://github.com/composer/composer/pull/11449

○ more future improvements possible!

https://github.com/composer/composer/pull/9620/files
https://github.com/composer/composer/pull/11449

What’s in the Dependency Solver?
And why does reducing loaded package versions

matter so much?

Boolean Algebra

● Notation
○ OR: ∨
○ AND: ∧
○ NOT: ¬

● Laws
○ Associativity: A ∨ (B ∨ C) = (A ∨ B) ∨ C
○ Commutativity: A ∨ B = B ∨ A
○ Distributivity: A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)
○ Absorption: A ∨ (A ∧ B) = A
○ Complementation 2: A ∨ ¬A = TRUE
○ etc.

Conjunctive Normal Form

● (A ∨ B) ∧ (¬B ∨ C ∨ ¬D) ∧ (D ∨ ¬E)
● (A ∨ B) is a clause
● A, B, ¬B, C, D, ¬D, E are literals
● A, B, C, D are atoms

Every propositional formula can be converted into an equivalent formula that is in CNF. This
transformation is based on rules about logical equivalences: the double negative law, De Morgan's
laws, and the distributive law.

What’s in the Dependency Solver?

● SAT Solver
○ boolean SATisfiability
○ Is there a set of values for a boolean formula that results in its evaluation to true
○ (A ∧ B) is satisfiable with A=TRUE and B=TRUE.
○ (A ∧ B ∧ ¬A) is not satisfiable because A cannot be both TRUE and FALSE.

● Why a SAT Solver?
○ Port from libzypp / zypper in SUSE back in 2011
○ EDOS project https://www.mancoosi.org/edos/ - Package Installation is NP-Complete

■ https://www.mancoosi.org/edos/algorithmic/#toc15 (For the really interested here you can see
someone encode any 3SAT problem as a debian or RPM package installation)

https://www.mancoosi.org/edos/
https://www.mancoosi.org/edos/algorithmic/#toc15

Dependencies as a SAT Problem

● Each version of a package is a literal
○ Package A v1.0.0 should be present: A-1.0.0
○ Package A v1.0.0 should not be present: ¬A-1.0.0

● A-1.0.0 requires B-1.0.0: (¬A-1.0.0 ∨ B-1.0.0)
● A-1.0.0 conflicts with B-1.0.0: (¬A-1.0.0 ∨ ¬B-1.0.0)
● C-1.0.0 and D-1.0.0 provide B-1.0 and A-1.0 requires B-1.0

 (¬A-1.0.0 ∨ C-1.0.0 ∨ D-1.0.0)
● C-1.0.0 replaces B-1.0 and A-1.0 requires B-1.0

 (¬C-1.0.0 ∨ ¬B-1.0.0) ∧ (¬A-1.0.0 ∨ B-1.0.0 ∨ C-1.0.0)

Fewer packages/versions to analyze? => fewer literals, fewer clauses, less memory

Dependencies as a SAT Problem: Example

project requires A *, A 1.0.0 requires B * and C *, B requires C *

1. (A-1.0.0) ∧ (¬A-1.0.0 ∨ B-1.0.0) ∧ (¬B-1.0.0 ∨ C-1.0.0) ∧ (¬A-1.0.0 ∨ C-1.0.0)
2. A-1.0.0=true true ∧ (false ∨ B-1.0.0) ∧ (¬B-1.0.0 ∨ C-1.0.0) ∧ (false ∨ C-1.0.0)
3. true ∧ (B-1.0.0) ∧ (¬B-1.0.0 ∨ C-1.0.0) ∧ (C-1.0.0)
4. B-1.0.0=true true ∧ true ∧ (false ∨ C-1.0.0) ∧ (C-1.0.0)
5. true ∧ true ∧ (C-1.0.0) ∧ (C-1.0.0)
6. C-1.0.0=true true ∧ true ∧ true ∧ true

Solved: Install A 1.0.0, B 1.0.0, C 1.0.0

Dependencies as a SAT Problem: Example

project requires A *, A 1.0.0 requires B * and C *, B conflicts with C *

1. (A-1.0.0) ∧ (¬A-1.0.0 ∨ B-1.0.0) ∧ (¬B-1.0.0 ∨ ¬C-1.0.0)∧ (¬A-1.0.0 ∨ C-1.0.0)
2. A-1.0.0=true true ∧ (false ∨ B-1.0.0) ∧ (¬B-1.0.0 ∨ ¬C-1.0.0)∧ (false ∨ C-1.0.0)
3. true ∧ (B-1.0.0) ∧ (¬B-1.0.0 ∨ ¬C-1.0.0)∧ (C-1.0.0)
4. B-1.0.0=true true ∧ true ∧ (false ∨ ¬C-1.0.0) ∧ (C-1.0.0)
5. true ∧ true ∧ (¬C-1.0.0) ∧ (C-1.0.0)
6. C-1.0.0=false true ∧ true ∧ true ∧ false

Conflict! A requires C, but B conflicts with C.

Free Choices / Policy

● Policy determines precedence of solution attempts for free choices
○ By default always try the highest version number first
○ Can be altered with flags like --prefer-lowest (reverse)

Dependencies as a SAT Problem: Example with free choice

project requires A *, A 1.0.0 requires B *, B 2.0.0 requires C *

1. (A-1.0.0) ∧ (¬A-1.0.0 ∨ B-1.0.0 ∨ B-2.0.0) ∧ (¬B-2.0.0 ∨ C-1.0.0)
2. A-1.0.0=true true ∧ (false ∨ B-1.0.0 ∨ B-2.0.0) ∧ (¬B-2.0.0 ∨ C-1.0.0)
3. true ∧ (B-1.0.0 ∨ B-2.0.0) ∧ (¬B-2.0.0 ∨ C-1.0.0)
4. B-2.0.0=true true ∧ (B-1.0.0∨ true) ∧ (false ∨ C-1.0.0) [Policy]
5. true ∧ true ∧ (C-1.0.0)
6. C-1.0.0=true true ∧ true ∧ true

Solved: Install A 1.0.0, B 2.0.0, C 1.0.0

Implementation

● Each package version object gets an integer id

● \Composer\DependencyResolver\Rule contains an array of literals
○ absolute value is the id, sign is used for negation

● \Composer\DependencyResolver\Solver::solve()
○ generates rules based on package pool and policy
○ finds solution with runSat()
○ returns new lock file state

● \Composer\DependencyResolver\DefaultPolicy
○ implements free choice decisions
○ handles options like --prefer-lowest or --prefer-stable

Representing dependencies/conflicts more efficiently

Regular requirements and conflicts

foo/bar 1.0 requires baz/qux ^2.0 (¬foo/bar 1.0 ∨ baz/qux 2.0.0 ∨ baz/qux 2.0.1 ∨ baz/qux 2.1.0)
foo/bar 1.0 conflicts with baz/qux ^2.0 (¬foo/bar 1.0 ∨ ¬baz/qux 2.0.0) ∧ (¬foo/bar 1.0 ∨ ¬baz/qux 2.0.1) ∧

(¬foo/bar 1.0 ∨ ¬baz/qux 2.1.0)

You can only install one version of a package
=> Composer automatically generates a conflict for each pair of versions

foo/bar 1.0, 1.1, 1.2 (¬foo/bar 1.0 ∨ ¬foo/bar 1.1) ∧ (¬foo/bar 1.0 ∨ ¬foo/bar 1.2) ∧
(¬foo/bar 1.1 ∨ ¬foo/bar 1.2)

Extreme Growth =
Symfony

3 versions 6 versions 100 versions 500 versions 1000 versions
Composer 1 3 rules 15 rules 4,950 rules 124,750 rules 499,500 rules
Composer 2 1 rule 1 rule 1 rule 1 rule 1 rule

Composer 2.0 uses a special single multi conflict rule representation for all of these rules

foo/bar 1.0, 1.1, 1.2 oneof(foo/bar 1.0, foo/bar 1.1,foo/bar 1.2)

Platform Requirements

- Platform repository
- implicitly defined additional package repository

- contains packages for
- PHP
- extensions
- system libraries (e.g. libxml)

- packages cannot be updated/installed/removed

Platform Requirements

$./composer.phar show --platform

composer-plugin-api 1.1.0 The Composer Plugin API
ext-apcu 5.1.8 The apcu PHP extension
ext-ctype 7.2.5 The ctype PHP extension
ext-curl 7.2.5 The curl PHP extension
ext-date 7.2.5 The date PHP extension
ext-dom 20031129 The dom PHP extension
ext-fileinfo 1.0.5 The fileinfo PHP extension
ext-filter 7.2.5 The filter PHP extension
ext-ftp 7.2.5 The ftp PHP extension
ext-hash 1.0 The hash PHP extension
ext-iconv 7.2.5 The iconv PHP extension
ext-intl 1.1.0 The intl PHP extension
ext-json 1.6.0 The json PHP extension
ext-libxml 7.2.5 The libxml PHP extension
...
lib-curl 7.59.0 The curl PHP library
lib-ICU 58.2 The intl PHP library
lib-libxml 2.9.5 The libxml PHP library
lib-openssl 2.5.5 LibreSSL 2.5.5
lib-pcre 8.41 The pcre PHP library
php 7.2.5 The PHP interpreter
php-64bit 7.2.5 The PHP interpreter, 64bit
php-ipv6 7.2.5 The PHP interpreter, with IPv6 support

Platform Requirements

{
 “require”: {
 “php”: “^7.1.1”
 }
}

$ php -v
PHP 5.6.10

$ composer update
Your requirements could not be resolved to an installable set
of packages.

Problem 1
 - This package requires php ^7.1.1 but your PHP version
(5.6.10) does not satisfy that requirement.

Platform Requirements

- What if you maintain multiple projects on your local system to be deployed
to different platforms?

- e.g. Server A running PHP 8.0, Server B running PHP 8.2

- What if you want to try out if your project would install on a different PHP
version?

Platform Requirements

{
 “require”: {
 “php”: “^8.1.5”
 }
}

$ php -v
PHP 7.4.10

$ composer update --ignore-platform-reqs
Success

No idea if dependencies even work on PHP 8.1.5

Platform Requirements

“require”: {
 “php”:“^8.1.5”,
 “ext-intl”: “*”
}
“config”: {“platform”:{
 “php”: “8.1.6”,
 “ext-intl”: “1.1.0”

}}

$ php -v
PHP 7.4.10

$ composer update
Success

Platform Requirements

“require”: {
 “php”:“^8.1.5”,
 “ext-intl”: “*”
}
“config”: {“platform”:{
 “php”: “8.1.6”,
 “ext-intl”: “1.1.0”

}}

$ composer update
Success

- Create ZIP
- deploy to prod

PHP Fatal Error

Prod was actually still on PHP 7.4

Platform Requirements

“require”: {
 “php”:“^8.1.5”,
 “ext-intl”: “*”
}
“config”: {“platform”:{
 “php”: “8.1.6”,
 “ext-intl”: “1.1.0”

}}

- dev$ composer update
- Create ZIP
- upload to prod
- composer check-platform-reqs

- no error? switch to new code

Partial Updates

{ “name”: “zebra/zebra”,
“require”: {

“horse/horse”: “^1.0” }}

{ “name”: “giraffe/giraffe”,
“require”: {

“duck/duck”: “^1.0” }}

Partial Updates

{ “name”: “horse/horse”,
“require”: {

“giraffe/giraffe”: “^1.0” }}

{ “name”: “duck/duck”,
“require”: {}}

Partial Updates

{
“name”: “my-project”,
“require”: {

“zebra/zebra”: “^1.0”,
“giraffe/giraffe”: “^1.0”

}
}

Partial Updates

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0

Now each package releases 1.1

Partial Updates

Project zebra 1.1

giraffe 1.0

horse 1.0

duck 1.0

$ composer update --dry-run zebra/zebra
Updating zebra/zebra (1.0 -> 1.1)

Partial Updates

Project zebra 1.1

giraffe 1.0

horse 1.1

duck 1.0

$ composer update --dry-run zebra/zebra --with-dependencies
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

Partial Updates

Project zebra 1.1

giraffe 1.1

horse 1.0

duck 1.0

$ composer update --dry-run zebra/zebra giraffe/giraffe
Updating zebra/zebra (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)

Partial Updates

Project zebra 1.1

giraffe 1.1

horse 1.1

duck 1.1

$ composer update zebra/zebra giraffe/giraffe --with-dependencies
Updating duck/duck (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

Partial Updates

Project zebra 1.1

giraffe 1.1

horse 1.1

duck 1.1

$ composer update zebra/zebra --with-all-dependencies
Updating duck/duck (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

Partial Updates

Project zebra 1.1

giraffe 1.0

horse 1.1

duck 1.0

$ composer update zebra/zebra --with-dependencies
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

Partial Updates

Project zebra 1.1

giraffe 1.1

horse 1.1

duck 1.1

$ composer update zebra/zebra --with-all-dependencies
Updating duck/duck (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

Upcoming Features & Future Plans

● Plans?
○ Keep things stable and compatible

○ Make Composer 1 metadata read-only, and finally get everyone to switch
○ Small improvements based on common workflows
○ Help users improve their projects’ security

Small Improvements: An example

● --minimal-changes or --minimal-update
○ Coming in 2.7
○ Problem: I want to update one dependency, but there’s a conflict, I need to update more,

but I don’t want to update everything
○ Solution: Partial updates with dependencies, but keeping them at the same version as the

lock file if possible

Small Improvements: An example

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0
Now each package releases 1.1

- zebra 1.1 requires horse ^1.1
- horse 1.1 requires giraffe ^1.1
- giraffe 1.1 still requires duck ^1.0

Small Improvements: An example

Project zebra 1.1

giraffe 1.1

horse 1.1

duck 1.1

$ composer update zebra/zebra --with-all-dependencies
Updating duck/duck (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

Small Improvements: An example

Project zebra 1.1

giraffe 1.1 duck 1.0

$ composer update zebra/zebra --with-all-dependencies --minimal-changes
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

horse 1.1

Small Improvements: An example

● --minimal-changes or --minimal-update
○ Coming in 2.7
○ Problem: I want to update one dependency, but there’s a conflict, I need to update more,

but I don’t want to update everything
○ Solution: Partial updates with dependencies, but keeping them at the same version as the

lock file if possible

Who could follow the beginning? Any idea how to implement this?

Small Improvements: An example

Who could follow the beginning? Any idea how to implement this?

- Run an update as it would happen without the version
- Make the policy pick locked version numbers before any other versions
- Result

- Solver will try locked versions first
- If locked versions are incompatible it will attempt to change versions

https://github.com/composer/composer/pull/11665

https://github.com/composer/composer/pull/11665

Improving Security for Users

● Recent addition: composer audit
○ run by default on updates since 2.4

● Should have the ability to block updating to vulnerable versions
○ currently possible by requiring roave/security-advisories
○ for drupal: drupal-composer/drupal-security-advisories

● Public UI access to & notifications for packagist.org audit/transparency log

● Built in SBOM support, currently only available with plugins

Packagist.org

● Metadata only
● No checksums for GitHub stored packages

○ https://github.com/sansecio/composer-integrity-plugin

● No signatures
● No way to upload code
● Tags can get recreated
● Packagist.org maintainer account takeover

https://blog.packagist.com/packagist-org-maintainer-account-takeover/
○ Editing of source URLs no longer allowed beyond 50k installs

https://github.com/sansecio/composer-integrity-plugin
https://blog.packagist.com/packagist-org-maintainer-account-takeover/

Improving Security for Users: Signatures

● Problem: GitHub archives not stable
○ packagist.org may need to host code

■ no longer avoiding category of security issues related to hosting code
■ have to moderate uploaded content, potentially work intensive

○ sign contents of archives only
■ non-standard, so harder to implement
■ archive metadata may itself contain exploits, need to really know well which parts

may be skipped

Improving Security for Users: Signatures

● Watching Drupal’s activity with a lot of interest
○ https://www.drupal.org/project/infrastructure/issues/3325040 - Automatic Updates / TUF

(The Update Framework)
○ Learn more today at 3pm in Room 3.1 A&B: “What’s next for Drupal Autoupdates”

● But: Signatures are not the holy grail
○ Don’t solve important questions like can you even trust the party who signed the package?
○ Doesn’t protect you from malicious maintainers (e.g. event-stream backdoor in 2018)

https://www.ntousakis.com/es-eurosec.pdf / https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/

○ TLS with GitHub already gives you quite a lot

https://www.drupal.org/project/infrastructure/issues/3325040
https://www.ntousakis.com/es-eurosec.pdf
https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/

Improving Security for Users

● Signatures
○ Drupal is building something that may end up being useful to all of Composer

■ https://www.drupal.org/project/infrastructure/issues/3325040 - Automatic Updates
/ TUF (The Update Framework)

■ Learn more today at 3pm in Room 3.1 A&B: “What’s next for Drupal Autoupdates”
○ Problems

■ GitHub archives not stable

https://www.drupal.org/project/infrastructure/issues/3325040

Some personal ideas / wishes

● Ways to define maintenance/support levels
○ Would be easy to work out when looking at a new project if things need urgent updates if

you can check automatically which versions are still maintained
○ Could work well as an addition to composer audit
○ Would help in prioritizing updates or selecting automated updates

○ https://github.com/composer/composer/issues/8272 open since Aug 2019, help
welcome!

■ already some new comments from pwolanin & drumm during DrupalCon
■ unfortunately not as easy as it seems on a first look

https://github.com/composer/composer/issues/8272

Some personal ideas / wishes

● Improved support for tools
○ Problem: Dev tools, e.g. phpunit, have requirements

■ can potentially conflict with your own requirements for the same packages
■ can result in your project using lower/higher versions than you would otherwise use

○ Idea: Separate requirements for tools
■ Problems: some tools need to be resolved together some independently
■ Some tools must run in same scope, how do we make multiple versions of same

package work?
○ Current workaround / alternative

■ PHPScoper + phar files, e.g. phpstan

Some personal ideas / wishes

● Better support for patches
○ Used a lot in the Drupal world - mostly cweagans/composer-patches
○ Currently bypasses Composer concepts like repositories

■ impossible to override
■ impossible to mirror and verify by tools like Private Packagist

○ At least uses Composer download mechanism now to support the same proxy settings
○ See https://github.com/cweagans/composer-patches/issues/358

https://github.com/cweagans/composer-patches/issues/358

Some personal ideas / wishes

● Private Packagist: Automatic Updates
○ Done right for PHP projects
○ Interested? Please contact me, I would love to hear

■ ideas you have
■ what problems you face with existing solutions
■ what do you use? did you build something yourself?
■ what are you dissatisfied with?

E-Mail: n.adermann@packagist.com
X: @naderman
Mastodon: @naderman@phpc.social

Questions / Feedback?

Private Packagist
https://packagist.com

mailto:n.adermann@packagist.com
https://twitter.com/naderman
https://phpc.social/@naderman

