SymfonyCon Vienna 2024
Composer Behind the Scenes

Nils Adermann
@naderman

|

Private Packagist
I https://packagist.com

Why is Composer 2 so much
faster?

Why is Composer 2 so much faster?

e Benchmarks

o install 30% to 50% faster
o update 30% to 90% faster & drop in memory usage of 70% to 98%

e Easyanswers
o parallel downloads, making use of HTTP/2 features
o parallel archive extraction
o more efficient metadata format

o doesn't really explain improvements for update

https://blog.packagist.com/composer-2-0-is-now-available/
https://susi.dev/composer2-perf
https://developers.ibexa.co/blog/benchmarks-of-composer-2.0-vs-1.10
https:/metadrop.net/es/articulos/drupal-composer-2

Q‘ PRIVATE PACKAGIST

https://blog.packagist.com/composer-2-0-is-now-available/
https://susi.dev/composer2-perf
https://developers.ibexa.co/blog/benchmarks-of-composer-2.0-vs-1.10
https://metadrop.net/es/articulos/drupal-composer-2

3 <D

: Metadata Code

e
composer composer *

update install

o o

: vendor
composer.json

+ composer
require

A

x composer
remove

“ PRIVATE PACKAGIST

vendor

symfony/http-foundation: 7.2.0 previous local upgrade attempt
composer.lock

symfony/http-foundation: 6.4.16 old production state
composer.json

symfony/http-foundation: 7.1.* limited upgrade for now, because of 6.3 issues

naderman@saumur ~/projects/composer/test/symfony-http-foundation$ composer update
Loading composer repositories with package information
Updating dependencies
Lock file operations: © installs, 1 update, 6 removals
- Upgrading symfony/http-foundation (v6.4.16 => v7.1.9)
Writing lock file
Installing dependencies from lock file (including require-dev)
Package operations: 3 installs, 1 update, 1 removal
- Removing symfony/deprecation-contracts (v3.5.1)
- Downgrading symfony/http-foundation (v7.2.8 => v7.1.9): Extracting archive
Generating autoload files
6 packages you are using are looking for funding.
Use the “composer fund® command to find out more!

“ PRIVATE PACKAGIST

‘r PRIVATE PACKAGIST

composer update: Reality in Composer 1

composer.json
requires

, " M
- composer.lock J
packagist.org

updater ‘
packages

| ,
' download |1
drupal.org install =
packages '
N
= ‘l

platform
packages

vendor dir

composer update: Reality in Composer 1 - aka some terrible ideas

e |dea: Solver only loads what it needs when it gets to that point
o Solution: Lazy load packages while creating memory representation in solver
o Problems
m Solver just waits for same info at a later point
m Impossible to reduce set of packages before generating dependencies
m Parallelized network access becomes hard to manage

e Idea: Avoid downloading metadata and packages unnecessarily and protect from loss of
packages

o Solution: use vendor/ and composer.lock metadata in solver

o Problems
m Duplicate metadata
m Unclear which “version” to use / when to update metadata
m Confusing results where packages that no longer exist don't get removed
m Inconsistent behavior depending on local state @

‘r PRIVATE PACKAGIST

‘r PRIVATE PACKAGIST

‘r PRIVATE PACKAGIST

composer update: Reality in Composer 2.2

e Pool
o Simple array of all package versions to be passed to the Dependency Solver

e Pool Builder collects package metadata from all sources/repositories
o Takes root composer.json requires into account
o Avoids loading metadata that is definitely not installable
o Tries to limit how many versions of a package get loaded by tracking constraints

e Pool Optimizer
o identifies versions with identical constraints and reduces them into one
o Shout out to Jason Woods / driskell for two additions based on Drupal projects
m Filters impossible packages out https://github.com/composer/composer/pull/9620/files
m Do not load replaced targets https:/qgithub.com/composer/composer/pull/11449
o more future improvements possible!

“ PRIVATE PACKAGIST

https://github.com/composer/composer/pull/9620/files
https://github.com/composer/composer/pull/11449

What's in the Dependency Solver?

And why does reducing loaded package versions
matter so much?

e Notation
o OR:V
o AND: A
o NOT: =
o Laws
o Associativity: AV BV C)=(AVB)VC
o Commutativity: AV B=B VA
o Distributivity: AV (B AC)=(AV B) A (AV C)
o Absorption:AV (AAB)=A
o Complementation 2: A V "A=TRUE
o efc.

‘r PRIVATE PACKAGIST

Conjunctive Normal Form

e AVB)A(™BV CV D)A(DV -E)
e (AV B)isaclause

e A B,B,C,D, D, E are literals

e A B,C,D areatoms

Every propositional formula can be converted into an equivalent formula that is in CNF. This
transformation is based on rules about logical equivalences: the double negative law, De Morgan's
laws, and the distributive law.

“I'

What's in the Dependency Solver?

e SAT Solver

o boolean SATisfiability
o Is there a set of values for a boolean formula that results in its evaluation to true
o (A A B) is satisfiable with A=TRUE and B=TRUE.

o (A A B A —A)is not satisfiable because A cannot be both TRUE and FALSE.

e \Why a SAT Solver?
o Port from libzypp / zypper in SUSE back in 2011

o EDOS project https://www.mancoosi.org/edos/ - Package Installation is NP-Complete
m hitps:// www.mancoosi.org/edos/algorithmic/#toc15 (For the really interested here you can see

someone encode any 3SAT problem as a debian or RPM package installation)

“I'

https://www.mancoosi.org/edos/
https://www.mancoosi.org/edos/algorithmic/#toc15

Dependencies as a SAT Problem

e Each version of a package is a literal
o Package Av1.0.0 should be present: A-1.0.0
o Package A v1.0.0 should not be present: =A-1.0.0

e A-1.0.0 requires B-1.0.0: (#A-1.0.0 V B-1.0.0)

e A-1.0.0 conflicts with B-1.0.0: (7A-1.0.0 V =B-1.0.0)

e (C-1.0.0 and D-1.0.0 provide B-1.0 and A-1.0 requires B-1.0
(#A-1.0.0 V C-1.0.0 V D-1.0.0)

e (C-1.0.0 replaces B-1.0 and A-1.0 requires B-1.0
(+C-1.0.0 V =B-1.0.0) A (7A-1.0.0 V B-1.0.0 V C-1.0.0)

Fewer packages/versions to analyze? => fewer literals, fewer clauses, less memory

“I'

Dependencies as a SAT Problem: Example

project requires A*, A 1.0.0 requires B * and C *, B requires C *

1 (A-1.0.0) A (#A-1.0.0 V B-1.0.0) A (7B-1.0.0 V C-1.0.0) A (=A-1.0.0 V C-1.0.0)
2. A-1.0.0=true true A (false V B-1.0.0) A (7B-1.0.0 V C-1.0.0) A (false V C-1.0.0)

3. true A (B-1.0.0) A (7B-1.0.0 V C-1.0.0) A (C-1.0.0)

4. B-1.0.0=true true A true A (false V C-1.0.0) A (C-1.0.0)

5 true A true A (C-1.0.0) A (C-1.0.0)

6. C-1.0.0=true true A true A true A true

Solved: InstallA1.0.0, B 1.0.0, C 1.0.0

“I'

Dependencies as a SAT Problem: Example

project requires A*, A 1.0.0 requires B * and C *, B conflicts with C *

1 (A1.0.0) A (A-1.0.0 V B-1.0.0) A (-B-1.0.0 V =C-1.0.0)A (-A-1.0.0 V C-1.0.0)
2. A-1.0.0=true true A (false V B-1.0.0) A (7B-1.0.0 V =C-1.0.0)A (false V C-1.0.0)

3. true A (B-1.0.0) A (7B-1.0.0 V =C-1.0.0)A (C-1.0.0)

4. B-1.0.0=true true A true A (false V 7C-1.0.0) A (C-1.0.0)

5 true A true A (0C-1.0.0) A (C-1.0.0)

6. C-1.0.0=false true A true A true N false

Conflict! A requires C, but B conflicts with C.

“I'

e Policy determines precedence of solution attempts for free choices

o By default always try the highest version number first
o Can be altered with flags like --prefer-lowest (reverse)

‘r PRIVATE PACKAGIST

Dependencies as a SAT Problem: Example with free choice

project requires A*, A 1.0.0 requires B *, B 2.0.0 requires C *

1 (A-1.0.0) A (-A-1.0.0 V B-1.0.0 V B-2.0.0)
2. A-1.0.0=true true A (false V B-1.0.0 V B-2.0.0)

3. true A (B-1.0.0 V B-2.0.0)

4. B-2.0.0=true true A (B-1.0.0V true)

5 true A true

6. C-1.0.0=true true A true

Solved: InstallA1.0.0, B 2.0.0, C 1.0.0

A (=B-2.0.0 V C-1.0.0)
A (-B-2.0.0 V C-1.0.0)
A (-B-2.0.0 V C-1.0.0)
A (false V C-1.0.0)

A (C-1.0.0)

A true

[Policy]

{I'

Implementation

e Each package version object gets an integer id

e \Composer\DependencyResolver\Rule contains an array of literals
o absolute value is the id, sign is used for negation

e \Composer\DependencyResolver\Solver::solve()
o generates rules based on package pool and policy
o finds solution with runSat()
o returns new lock file state

e \Composer\DependencyResolver\DefaultPolicy
o implements free choice decisions
o handles options like --prefer-lowest or --prefer-stable

‘hl'

Regular requirements and conflicts

foo/bar 1.0 requires baz/qux *2.90 (-foo/bar 1.8 V baz/qux 2.0.8 V baz/qux 2.6.1 V baz/qux 2.1.0)
foo/bar 1.0 conflicts with baz/qux *2.0 (-foo/bar 1.8 V -baz/qux 2.0.0) A (-foo/bar 1.8 V =-baz/qux 2.0.1) A
(-foo/bar 1.8 V =-baz/qux 2.1.0)

You can only install one version of a package
=> Composer automatically generates a conflict for each pair of versions

foo/bar 1.0, 1.1, 1.2 (-foo/bar 1.0 V -foo/bar 1.1) A (-foo/bar 1.8 V -foo/bar 1.2) A
(-foo/bar 1.1 V =-foo/bar 1.2)

n!

Extreme Growth (Z) = 3m—2)

Symfony
3 versions 6 versions 100 versions 500 versions 1000 versions
Composer 1 3rules 15 rules 4,950 rules 124,750 rules 499,500 rules
Composer 2 1 rule 1 rule 1 rule 1 rule 1 rule

Composer 2.0 uses a special single multi conflict rule representation for all of these rules

foo/bar 1.0, 1.1, 1.2 oneof (foo/bar 1.0, foo/bar 1.1,foo/bar 1.2)

* PRIVATE PACKAGIST

“name”: “zebra/zebra”,
“require”: {
“horse/horse”: “*1.0" }}

“name” . “giraffe/giraffe”,
“require”: {
“duck/duck”: “~1.0" }}

‘r PRIVATE PACKAGIST

“name”: “horse/horse”,
“require”: {
“giraffe/giraffe”: “7*1.6" }}

“name” : “duck/duck”,
“require”: {}}

* PRIVATE PACKAGIST

“name”: “my-project”,
“require”: {
“zebra/zebra”: “*1.6",
“giraffe/giraffe”: “*1.0"

* PRIVATE PACKAGIST

V- 7-7

Now each package releases 1.1

* PRIVATE PACKAGIST

$ composer update --dry-run zebra/zebra
Updating zebra/zebra (1.0 -> 1.1)

‘r PRIVATE PACKAGIST

S composer update --dry-run zebra/zebra --with-dependencies
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

* PRIVATE PACKAGIST

S composer update --dry-run zebra/zebra giraffe/giraffe
Updating zebra/zebra (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)

* PRIVATE PACKAGIST

V- 7-7

S composer update zebra/zebra giraffe/giraffe --with-dependencies
Updating duck/duck (1.8 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

‘r PRIVATE PACKAGIST

V- 7-7

S composer update zebra/zebra --with-all-dependencies
Updating duck/duck (1.8 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

‘r PRIVATE PACKAGIST

V- 7-7

S composer update zebra/zebra --with-dependencies
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

‘r PRIVATE PACKAGIST

V- 7-7

S composer update zebra/zebra --with-all-dependencies
Updating duck/duck (1.8 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

‘r PRIVATE PACKAGIST

e Plans?
o Keep things stable and compatible

o Composer 1 shut down on packagist.org
m Feb 1st, 2025: Composer 1 metadata becomes read-only
m Aug 1st, 2025: Composer 1 metadata becomes unavailable
e composer update on v1 will error, install from lock keeps working
o Small improvements based on common workflows
o Help users improve their projects’ security

‘r PRIVATE PACKAGIST

-minimal-changes
o Since Composer 2.7
o Problem: | want to update one dependency, but there’s a conflict, | need to update more,
but | don’t want to update everything

o Solution: Partial updates with dependencies, but keeping them at the same version as the
lock file if possible

‘r PRIVATE PACKAGIST

i e
-\ﬁ XN

Now each package releases 1.1

- zebra 1.1 requires horse *1.1
- horse 1.1 requires giraffe 1.1
- giraffe 1.1 still requires duck 1.0

‘r PRIVATE PACKAGIST

V- 7-7

S composer update zebra/zebra --with-all-dependencies
Updating duck/duck (1.8 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

‘r PRIVATE PACKAGIST

V- 7-7

S composer update zebra/zebra --with-all-dependencies --minimal-changes
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.8 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

‘r PRIVATE PACKAGIST

e -minimal-changes
o Since Composer 2.7
o Problem: | want to update one dependency, but there’s a conflict, | need to update more,
but | don’t want to update everything

o Solution: Partial updates with dependencies, but keeping them at the same version as the
lock file if possible

Who could follow the beginning? Any idea how to implement this?

‘r PRIVATE PACKAGIST

Small Improvements: An example

Who could follow the beginning? Any idea how to implement this?

- Set up the update the same way as if the option wasn't specified
- Make the policy pick locked version numbers before any other versions

- Result

Solver will try locked versions first
If locked versions are incompatible it will attempt to change versions

https://github.com/composer/composer/pull/11665

{I'

https://github.com/composer/composer/pull/11665

composer audit & packagist.org advisory database API
o run by default on updates since 2.4 (October 2022)

Should have the ability to block updating to vulnerable versions
o currently possible by requiring roave/security-advisories

Public Ul access to & notifications for packagist.org audit/transparency log

Built in SBOM support, currently only available with plugins

* PRIVATE PACKAGIST

Metadata only

No checksums for GitHub stored packages
o https://qithub.com/sansecio/composer-integrity-plugin

No signatures
No way to upload code
Tags can get recreated

Packagist.org maintainer account takeover
https://blog.packaqgist.com/packaqgist-org-maintainer-account-takeover/

o Editing of source URLs no longer allowed beyond 50k installs

‘r PRIVATE PACKAGIST

https://github.com/sansecio/composer-integrity-plugin
https://blog.packagist.com/packagist-org-maintainer-account-takeover/

Improving Security for Users: Signatures

e Problem: GitHub archives not stable (>99% of packagist.org packages)

o packagist.org may need to host code
m no longer avoiding category of security issues related to hosting code
m need to address build attestation
m have to moderate uploaded content, potentially work intensive

o sign contents of archives only
m non-standard, so harder to implement
m archive metadata may itself contain exploits, need to really know well which parts

may be skipped

“I'

Observing Drupal’s initiative
https://www.drupal.org/project/infrastructure/issues/3325040 - Automatic Updates / TUF

@)

(The Update Framework)

But: Signatures are not the holy grail

@)

@)

Don't solve important questions like can you even trust the party who signed the package?
Doesn't protect you from malicious maintainers (e.g. event-stream backdoor in 2018 or
xz/liblzma in 2024)

https://www.ntousakis.com/es-eurosec.pdf / https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/
https://en.wikipedia.org/wiki/XZ_Utils_backdoor

TLS with GitHub already gives you quite a lot

* PRIVATE PACKAGIST

https://www.drupal.org/project/infrastructure/issues/3325040
https://www.ntousakis.com/es-eurosec.pdf
https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/
https://en.wikipedia.org/wiki/XZ_Utils_backdoor

PIE: PHP Installer for Extensions

e New installer for PHP extensions (replacement for PECL)
o pie install apcu/apcu

e Extension metadata in composer.json served by packagist.org
o https://packagist.org/extensions

e Funded by the PHP Foundation

o Goal: shut down hardly maintained pecl.php.net

e Try it today, port your extensions, provide feedback
o https://qithub.com/php/pie

Friday 15:15 SensiolLabs Track “From Pickles to PIE Sweeten Your PHP Extension
Installs” with Andreas Braun)

https://packagist.org/extensions
https://github.com/php/pie

It's your supply chain, fund it!

Sponsor the PHP Foundation
o https://thephp.foundation/

Sponsor Symfony
o https://symfony.com/sponsor

Buy a Private Packagist subscription
o https://packagist.com/

Run composer fund

‘r PRIVATE PACKAGIST

https://thephp.foundation/
https://symfony.com/sponsor
https://packagist.com/

e Ways to define maintenance/support levels
o Would be easy to work out when looking at a new project if things need urgent updates if
you can check automatically which versions are still maintained
Could work well as an addition to composer audit
Would help in prioritizing updates or selecting automated updates

o https://github.com/composer/composer/issues/8272 open since Aug 2019, help
welcome!
m unfortunately not as easy as it seems on a first look

‘r PRIVATE PACKAGIST

https://github.com/composer/composer/issues/8272

Some personal ideas / wishes

e Improved support for tools
o Problem: Dev tools, e.g. phpunit, have requirements
m can potentially conflict with your own requirements for the same packages
m canresult in your project using lower/higher versions than you would otherwise use
o Idea: Separate requirements for tools
m Problems: some tools need to be resolved together some independently
m Some tools must run in same scope, how do we make multiple versions of same
package work?
o Current workaround / alternative
m PHPScoper + phar files, e.g. phpstan

‘hl'

e Better support for patches
o Most widely used as cweagans/composer-patches
o Please only use with locally versioned files
o Currently bypasses Composer concepts like repositories
m impossible to override
m impossible to mirror and verify by tools like Private Packagist
o Atleast uses Composer download mechanism now to support the same proxy settings
o See https://github.com/cweagans/composer-patches/issues/358

‘r PRIVATE PACKAGIST

https://github.com/cweagans/composer-patches/issues/358

e Conductor by Private Packagist
o Full Composer support (plugins, scripts)
o Built with PHP in mind, great default rules, full understanding of Composer capabilities
o Interested? Talk to me at the conference, I'd love to hear
m ideas you have
m what problems you face with existing solutions
m what do you use? did you build something yourself?
m what are you dissatisfied with?
o Sign up for waitlist at https://packagist.com/features/conductor

‘r PRIVATE PACKAGIST

https://packagist.com/features/conductor

Questions / Feedback?

Private Packagist
https://packagist.com

E-Mail: n.adermann@packaqgist.com

Bluesky: @naderman.de
X: @naderman
Mastodon: @naderman@phpc.social

mailto:n.adermann@packagist.com
https://bsky.app/profile/naderman.de
https://twitter.com/naderman
https://phpc.social/@naderman

