
Private Packagist
https://packagist.com

Nils Adermann
@naderman

Laracon EU 2025

Internals of Composer

Why is Composer 2 so much
faster?

Why is Composer 2 so much faster?

● Benchmarks
○ install 30% to 50% faster
○ update 30% to 90% faster & drop in memory usage of 70% to 98%

● Easy answers
○ parallel downloads, making use of HTTP/2 features
○ parallel archive extraction
○ more efficient metadata format

○ doesn’t really explain improvements for update

https://blog.packagist.com/composer-2-0-is-now-available/
https://susi.dev/composer2-perf
https://developers.ibexa.co/blog/benchmarks-of-composer-2.0-vs-1.10
https://metadrop.net/es/articulos/drupal-composer-2

https://blog.packagist.com/composer-2-0-is-now-available/
https://susi.dev/composer2-perf
https://developers.ibexa.co/blog/benchmarks-of-composer-2.0-vs-1.10
https://metadrop.net/es/articulos/drupal-composer-2

Separating update & install - Declaring state over manipulating state

Separating update & install

vendor
symfony/http-foundation: 7.2.0 previous local upgrade attempt

composer.lock
symfony/http-foundation: 6.4.16 old production state

composer.json
symfony/http-foundation: 7.1.* limited upgrade for now, because of 6.3 issues

naderman@saumur:~/projects/composer/test/symfony-http-foundation$ composer update
Loading composer repositories with package information
Updating dependencies
Lock file operations: 0 installs, 1 update, 0 removals
 - Upgrading symfony/http-foundation (v6.4.16 => v7.1.9)
Writing lock file
Installing dependencies from lock file (including require-dev)
Package operations: 3 installs, 1 update, 1 removal
 - Removing symfony/deprecation-contracts (v3.5.1)
 - Downgrading symfony/http-foundation (v7.2.0 => v7.1.9): Extracting archive
Generating autoload files
6 packages you are using are looking for funding.
Use the `composer fund` command to find out more!

composer update: The idea

Dependency Solver

composer.json
requires

packagist.org
packages

composer.lock

download
install

vendor dir
drupal.org
packages

composer update: Reality in Composer 1

updater

composer.json
requires

packagist.org
packages

composer.lock

download
install

vendor dir
drupal.org
packages

platform
packages

composer update: Reality in Composer 1 - aka some terrible ideas

● Idea: Solver only loads what it needs when it gets to that point
○ Solution: Lazy load packages while creating memory representation in solver
○ Problems

■ Solver just waits for same info at a later point
■ Impossible to reduce set of packages before generating dependencies
■ Parallelized network access becomes hard to manage

● Idea: Avoid downloading metadata and packages unnecessarily and protect from loss of
packages

○ Solution: use vendor/ and composer.lock metadata in solver
○ Problems

■ Duplicate metadata
■ Unclear which “version” to use / when to update metadata
■ Confusing results where packages that no longer exist don’t get removed
■ Inconsistent behavior depending on local state

composer update: The idea

Dependency Solver

composer.json
requires

packagist.org
packages

composer.lock

download
install

vendor dir
drupal.org
packages

platform
packages

composer update: Reality in Composer 2

Pool Builder

composer.json
requires

packagist.org
packages

composer.lock

download
install

vendor dir
drupal.org
packages

platform
packages

Dependency Solver

composer update: Reality in Composer 2.2

Pool
Builder

composer.json
requires

packagist.org
packages

composer.lock

download
install

vendor dir
drupal.org
packages

platform
packages

Dependency Solver

Pool
Optimizer

composer update: Reality in Composer 2.2

● Pool
○ Simple array of all package versions to be passed to the Dependency Solver

● Pool Builder collects package metadata from all sources/repositories
○ Takes root composer.json requires into account
○ Avoids loading metadata that is definitely not installable
○ Tries to limit how many versions of a package get loaded by tracking constraints

● Pool Optimizer
○ identifies versions with identical constraints and reduces them into one
○ Shout out to Jason Woods / driskell for two additions based on Drupal projects

■ Filters impossible packages out https://github.com/composer/composer/pull/9620/files
■ Do not load replaced targets https://github.com/composer/composer/pull/11449

○ more future improvements possible!

https://github.com/composer/composer/pull/9620/files
https://github.com/composer/composer/pull/11449

What’s in the Dependency Solver?
And why does reducing loaded package versions

matter so much?

Boolean Algebra

● Notation
○ OR: ∨
○ AND: ∧
○ NOT: ¬

● Laws
○ Associativity: A ∨ (B ∨ C) = (A ∨ B) ∨ C
○ Commutativity: A ∨ B = B ∨ A
○ Distributivity: A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)
○ Absorption: A ∨ (A ∧ B) = A
○ Complementation 2: A ∨ ¬A = TRUE
○ etc.

Conjunctive Normal Form

● (A ∨ B) ∧ (¬B ∨ C ∨ ¬D) ∧ (D ∨ ¬E)
● (A ∨ B) is a clause
● A, B, ¬B, C, D, ¬D, E are literals
● A, B, C, D are atoms

Every propositional formula can be converted into an equivalent formula that is in CNF. This
transformation is based on rules about logical equivalences: the double negative law, De Morgan's
laws, and the distributive law.

What’s in the Dependency Solver?

● SAT Solver
○ boolean SATisfiability
○ Is there a set of values for a boolean formula that results in its evaluation to true
○ (A ∧ B) is satisfiable with A=TRUE and B=TRUE.
○ (A ∧ B ∧ ¬A) is not satisfiable because A cannot be both TRUE and FALSE.

● Why a SAT Solver?
○ Port from libzypp / zypper in SUSE back in 2011
○ EDOS project https://www.mancoosi.org/edos/ - Package Installation is NP-Complete

■ https://www.mancoosi.org/edos/algorithmic/#toc15 (For the really interested here you can see
someone encode any 3SAT problem as a debian or RPM package installation)

https://www.mancoosi.org/edos/
https://www.mancoosi.org/edos/algorithmic/#toc15

Dependencies as a SAT Problem

● Each version of a package is a literal
○ Package A v1.0.0 should be present: A-1.0.0
○ Package A v1.0.0 should not be present: ¬A-1.0.0

● A-1.0.0 requires B-1.0.0: (¬A-1.0.0 ∨ B-1.0.0)
● A-1.0.0 conflicts with B-1.0.0: (¬A-1.0.0 ∨ ¬B-1.0.0)
● C-1.0.0 and D-1.0.0 provide B-1.0 and A-1.0 requires B-1.0

 (¬A-1.0.0 ∨ C-1.0.0 ∨ D-1.0.0)
● C-1.0.0 replaces B-1.0 and A-1.0 requires B-1.0

 (¬C-1.0.0 ∨ ¬B-1.0.0) ∧ (¬A-1.0.0 ∨ B-1.0.0 ∨ C-1.0.0)

Fewer packages/versions to analyze? => fewer literals, fewer clauses, less memory

Dependencies as a SAT Problem: Example

project requires A *, A 1.0.0 requires B * and C *, B requires C *

1. (A-1.0.0) ∧ (¬A-1.0.0 ∨ B-1.0.0) ∧ (¬B-1.0.0 ∨ C-1.0.0) ∧ (¬A-1.0.0 ∨ C-1.0.0)
2. A-1.0.0=true true ∧ (false ∨ B-1.0.0) ∧ (¬B-1.0.0 ∨ C-1.0.0) ∧ (false ∨ C-1.0.0)
3. true ∧ (B-1.0.0) ∧ (¬B-1.0.0 ∨ C-1.0.0) ∧ (C-1.0.0)
4. B-1.0.0=true true ∧ true ∧ (false ∨ C-1.0.0) ∧ (C-1.0.0)
5. true ∧ true ∧ (C-1.0.0) ∧ (C-1.0.0)
6. C-1.0.0=true true ∧ true ∧ true ∧ true

Solved: Install A 1.0.0, B 1.0.0, C 1.0.0

Dependencies as a SAT Problem: Example

project requires A *, A 1.0.0 requires B * and C *, B conflicts with C *

1. (A-1.0.0) ∧ (¬A-1.0.0 ∨ B-1.0.0) ∧ (¬B-1.0.0 ∨ ¬C-1.0.0)∧ (¬A-1.0.0 ∨ C-1.0.0)
2. A-1.0.0=true true ∧ (false ∨ B-1.0.0) ∧ (¬B-1.0.0 ∨ ¬C-1.0.0)∧ (false ∨ C-1.0.0)
3. true ∧ (B-1.0.0) ∧ (¬B-1.0.0 ∨ ¬C-1.0.0)∧ (C-1.0.0)
4. B-1.0.0=true true ∧ true ∧ (false ∨ ¬C-1.0.0) ∧ (C-1.0.0)
5. true ∧ true ∧ (¬C-1.0.0) ∧ (C-1.0.0)
6. C-1.0.0=false true ∧ true ∧ true ∧ false

Conflict! A requires C, but B conflicts with C.

Free Choices / Policy

● Policy determines precedence of solution attempts for free choices
○ By default always try the highest version number first
○ Can be altered with flags like --prefer-lowest (reverse)

Dependencies as a SAT Problem: Example with free choice

project requires A *, A 1.0.0 requires B *, B 2.0.0 requires C *

1. (A-1.0.0) ∧ (¬A-1.0.0 ∨ B-1.0.0 ∨ B-2.0.0) ∧ (¬B-2.0.0 ∨ C-1.0.0)
2. A-1.0.0=true true ∧ (false ∨ B-1.0.0 ∨ B-2.0.0) ∧ (¬B-2.0.0 ∨ C-1.0.0)
3. true ∧ (B-1.0.0 ∨ B-2.0.0) ∧ (¬B-2.0.0 ∨ C-1.0.0)
4. B-2.0.0=true true ∧ (B-1.0.0∨ true) ∧ (false ∨ C-1.0.0) [Policy]
5. true ∧ true ∧ (C-1.0.0)
6. C-1.0.0=true true ∧ true ∧ true

Solved: Install A 1.0.0, B 2.0.0, C 1.0.0

Implementation

● Each package version object gets an integer id

● \Composer\DependencyResolver\Rule contains an array of literals
○ absolute value is the id, sign is used for negation

● \Composer\DependencyResolver\Solver::solve()
○ generates rules based on package pool and policy
○ finds solution with runSat()
○ returns new lock file state

● \Composer\DependencyResolver\DefaultPolicy
○ implements free choice decisions
○ handles options like --prefer-lowest or --prefer-stable

Representing dependencies/conflicts more efficiently

Regular requirements and conflicts

foo/bar 1.0 requires baz/qux ^2.0 (¬foo/bar 1.0 ∨ baz/qux 2.0.0 ∨ baz/qux 2.0.1 ∨ baz/qux 2.1.0)
foo/bar 1.0 conflicts with baz/qux ^2.0 (¬foo/bar 1.0 ∨ ¬baz/qux 2.0.0) ∧ (¬foo/bar 1.0 ∨ ¬baz/qux 2.0.1) ∧

(¬foo/bar 1.0 ∨ ¬baz/qux 2.1.0)

You can only install one version of a package
=> Composer automatically generates a conflict for each pair of versions

foo/bar 1.0, 1.1, 1.2 (¬foo/bar 1.0 ∨ ¬foo/bar 1.1) ∧ (¬foo/bar 1.0 ∨ ¬foo/bar 1.2) ∧
(¬foo/bar 1.1 ∨ ¬foo/bar 1.2)

Extreme Growth =
Symfony

3 versions 6 versions 100 versions 500 versions 1000 versions
Composer 1 3 rules 15 rules 4,950 rules 124,750 rules 499,500 rules
Composer 2 1 rule 1 rule 1 rule 1 rule 1 rule

Composer 2.0 uses a special single multi conflict rule representation for all of these rules

foo/bar 1.0, 1.1, 1.2 oneof(foo/bar 1.0, foo/bar 1.1,foo/bar 1.2)

Partial Updates

{ “name”: “zebra/zebra”,
“require”: {

“horse/horse”: “^1.0” }}

{ “name”: “giraffe/giraffe”,
“require”: {

“duck/duck”: “^1.0” }}

Partial Updates

{ “name”: “horse/horse”,
“require”: {

“giraffe/giraffe”: “^1.0” }}

{ “name”: “duck/duck”,
“require”: {}}

Partial Updates

{
“name”: “my-project”,
“require”: {

“zebra/zebra”: “^1.0”,
“giraffe/giraffe”: “^1.0”

}
}

Partial Updates

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0

Now each package releases 1.1

Partial Updates

Project zebra 1.1

giraffe 1.0

horse 1.0

duck 1.0

$ composer update --dry-run zebra/zebra
Updating zebra/zebra (1.0 -> 1.1)

Partial Updates

Project zebra 1.1

giraffe 1.0

horse 1.1

duck 1.0

$ composer update --dry-run zebra/zebra --with-dependencies
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

Partial Updates

Project zebra 1.1

giraffe 1.1

horse 1.0

duck 1.0

$ composer update --dry-run zebra/zebra giraffe/giraffe
Updating zebra/zebra (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)

Partial Updates

Project zebra 1.1

giraffe 1.1

horse 1.1

duck 1.1

$ composer update zebra/zebra giraffe/giraffe --with-dependencies
Updating duck/duck (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

Partial Updates

Project zebra 1.1

giraffe 1.1

horse 1.1

duck 1.1

$ composer update zebra/zebra --with-all-dependencies
Updating duck/duck (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

Partial Updates

Project zebra 1.1

giraffe 1.0

horse 1.1

duck 1.0

$ composer update zebra/zebra --with-dependencies
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

Partial Updates

Project zebra 1.1

giraffe 1.1

horse 1.1

duck 1.1

$ composer update zebra/zebra --with-all-dependencies
Updating duck/duck (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

--minimal-changes

● --minimal-changes
○ Since Composer 2.7 (Feb 8, 2024)
○ Problem: I want to update one dependency, but there’s a conflict, I need to update more,

but I don’t want to update everything
○ Solution: Partial updates with dependencies, but keeping them at the same version as the

lock file if possible

--minimal-changes

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0
Now each package releases 1.1

- zebra 1.1 requires horse ^1.1
- horse 1.1 requires giraffe ^1.1
- giraffe 1.1 still requires duck ^1.0

--minimal-changes

Project zebra 1.1

giraffe 1.1

horse 1.1

duck 1.1

$ composer update zebra/zebra --with-all-dependencies
Updating duck/duck (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

--minimal-changes

Project zebra 1.1

giraffe 1.1 duck 1.0

$ composer update zebra/zebra --with-all-dependencies --minimal-changes
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

horse 1.1

--minimal-changes

● --minimal-changes
○ Since Composer 2.7 (Feb 8, 2024)
○ Problem: I want to update one dependency, but there’s a conflict, I need to update more,

but I don’t want to update everything
○ Solution: Partial updates with dependencies, but keeping them at the same version as the

lock file if possible

Who could follow earlier? Any idea how to implement this?

--minimal-changes

Who could follow the beginning? Any idea how to implement this?

- Set up the update the same way as if the option wasn’t specified
- Make the policy pick locked version numbers before any other versions
- Result

- Solver will try locked versions first
- If locked versions are incompatible it will attempt to change versions

https://github.com/composer/composer/pull/11665

https://github.com/composer/composer/pull/11665

Introducing

Automatic dependency
updates for Composer

Sign up now for Early Access

E-Mail: n.adermann@packagist.com
Bluesky: @naderman.de
X: @naderman
Mastodon: @naderman@phpc.social

Questions / Feedback?

Private Packagist
https://packagist.com

mailto:n.adermann@packagist.com
https://bsky.app/profile/naderman.de
https://twitter.com/naderman
https://phpc.social/@naderman

