
Composer Best Practices
2025

Nils Adermann
@naderman

Private Packagist
https://packagist.com

API Platform Conference 2025

https://packagist.com

What happened so far

● February 5th, 2011 - first lines of code

● March 1st, 2012 - first alpha release

● November 14th, 2015 - first stable release

● October 24th, 2020 - second major release

What’s actually new or different in 2025?

● packagist.org 1.x metadata shutdown
○ Still 2.7% of all install stats reported from Composer 1.x lock file installs
○ Switch to Composer 2! Stop using the v1 API!
○ Mission critical app? Private Packagist can proxy to Composer 1.x protocol

● New types of security attacks
○ First typo squatting
○ Now AI hallucinated package names

● Really trying not to change too much

● Occasionally new flags or commands
○ Today: composer audit, composer bump, composer update --minimal-changes, composer

update --patch-only

http://packagist.org

Why should you care about supply chain security?

● Online crime is rampant

● Criminals may attack your website to steal your
visitors/users/customers identities, payment info, or other personal data
even if it’s just for phishing or social engineering

○ Don’t think your data isn’t valuable!

● Still essentially fighting the same OWASP Top 10 as 20 years ago
○ But also in your dependencies!

Supply Chain Attacks

“2020 State of the Software Supply Chain” by sonatype
https://www.sonatype.com/hubfs/Corporate/Software%20Supply%20Chain/2020/SON_SSSC-Report-2020_final_aug11.pdf

https://www.sonatype.com/hubfs/Corporate/Software%20Supply%20Chain/2020/SON_SSSC-Report-2020_final_aug11.pdf

Supply Chain Attacks

“9th Annual State of the Software Supply Chain” by sonatype
https://www.sonatype.com/hubfs/2023%20Sonatype-%209th%20Annual%20State%20of%20the%20Software%20Supply%20Chain-%20Update.pdf

https://www.sonatype.com/hubfs/2023%20Sonatype-%209th%20Annual%20State%20of%20the%20Software%20Supply%20Chain-%20Update.pdf

Supply Chain Funding

● $2,000 donations per year to OpenSSL
● $841 in 3 days after Heartbleed 🤯
● Creation of Open Software Security Foundation

(OpenSSF) at Linux Foundation
○ > $10M raised by 2021

● German Government: Sovereign Tech
Fund/Agency

○ https://sovereigntechfund.de since 2022
○ €17M budget in 2024, €11.5M in 2023

● Alpha-Omega
○ https://alpha-omega.dev/ since 2022
○ $5M granted in 2024

https://sovereigntechfund.de/
https://alpha-omega.dev/

Supply Chain Funding

● It’s your supply chain, you need to help fund it!

● composer fund will tell you which of your dependencies need financial
help

● Sponsor the PHP Foundation
○ https://thephp.foundation/sponsor/

● Buy a Private Packagist subscription to help fund Composer development
○ https://packagist.com

● Join the Open Source Pledge
○ Commit to sponsoring open source for at least $2000/year per FTE-equivalent developer
○ https://opensourcepledge.com/

https://thephp.foundation/sponsor/
https://packagist.com
https://opensourcepledge.com/

Packagist.org

● Metadata only
○ No checksums for GitHub stored packages

■ https://github.com/sansecio/composer-integrity-plugin
○ No signatures

■ https://www.drupal.org/project/infrastructure/issues/3325040 - TUF
○ No way to upload code

● Positively
○ Everything over TLS
○ Installation from GitHub source archive URLs improves trust in artifacts
○ Smaller attack surface on packagist.org

https://github.com/sansecio/composer-integrity-plugin
https://www.drupal.org/project/infrastructure/issues/3325040

Composer Supply Chain Vulnerabilities

● Mar 11, 2021: Git Clone Security Vulnerability
○ https://blog.packagist.com/git-clone-security-vulnerability/
○ Git vulnerability on case insensitive filesystems can be exploited through Composer if you

clone dependencies

● Apr 27, 2021: Composer Command Injection Vulnerability
○ https://blog.packagist.com/composer-command-injection-vulnerability/
○ Code execution through Mercurial repository URL injection

● Apr 13, 2022: Composer Command Injection Vulnerability
○ https://blog.packagist.com/cve-2022-24828-composer-command-injection-vulnerability/
○ Code execution through Git or Mercurial branch names

https://blog.packagist.com/git-clone-security-vulnerability/
https://blog.packagist.com/composer-command-injection-vulnerability/
https://blog.packagist.com/cve-2022-24828-composer-command-injection-vulnerability/

Composer Supply Chain Attacks

● May 19, 2022: GitHub Repo Jacking
○ Attacker registered GitHub username of former maintainer
○ Republished package with malicious code to steal AWS credentials
○ https://thehackernews.com/2022/05/pypi-package-ctx-and-php-library-phpass.html
○ https://github.blog/2024-02-21-how-to-stay-safe-from-repo-jacking/

■ Problematic with VCS repo URL references in composer.json too
○ Packagist.org uses GitHub repo ids: https://github.com/composer/packagist/pull/1411

● May 1, 2023: Packagist.org maintainer account takeover
○ https://blog.packagist.com/packagist-org-maintainer-account-takeover/
○ Editing of source URLs no longer allowed beyond 50k installs

https://thehackernews.com/2022/05/pypi-package-ctx-and-php-library-phpass.html
https://github.blog/2024-02-21-how-to-stay-safe-from-repo-jacking/
https://github.com/composer/packagist/pull/1411
https://blog.packagist.com/packagist-org-maintainer-account-takeover/

Use your own Composer repository

- Satis
- JFrog Artifactory
- Sonatype Nexus Repository
- Cloudsmith
- GitLab Package Registry
- …

- Private Packagist

Private Packagist

- Stores a copy of all used versions of your dependencies
- Safe from deletion
- Safe from modification

- Serves package metadata and code

- Possible with some alternatives but usually with more effort and less
convenience

- e.g. copy all dependencies into git repositories, how do you keep those updated then?

Best Practice: Semantic Versioning

Promise of Compatibility

X.Y.Z
- Must be used consistently

Dare to increment X!
- Only valuable if BC/Compatibility promise formalized

- See https://symfony.com/doc/current/contributing/code/bc.html
- Document in Changelog

https://symfony.com/doc/current/contributing/code/bc.html

Versions Constraints

● Exact Match: 1.0.0 1.2.3-beta2 dev-main
● Wildcard Range: 1.0.* 2.*
● Hyphen Range: 1.0-2.0 1.0.0 - 2.1.0

>=1.0.0 <2.1 >=1.0.0 <=2.1.0

● (Unbounded Range: >= 1.0)
Bad!

● Next Significant Release ~1.2 ~1.2.3
>=1.2.0 <2.0.0 >=1.2.3 <1.3.0

● Caret/Semver Operator ^1.2 ^1.2.3 Best Choice for Libraries
>=1.2.0 <2.0.0 >=1.2.3 <2.0.0

Operatoren: “ “ AND, “||” OR

Versions Constraints

● Allowing multiple majors with minimum requirements
^1.1.4 || ^2.3.1 || ^3.0.2
“Compatible with versions 1, 2 and 3, but only from the respective minimum versions”

● Excluding broken versions
^1.1.3 !=1.4.1 !=1.7.2
“^1.1.3 but not the broken versions 1.4.1 and 1.7.2”

Stabilities

● Order dev -> alpha -> beta -> RC -> stable

● Automatically from tags
1.2.3 -> stable
1.3.0-beta3 -> beta

● Automatically from branches
Branch -> Version (Stability)
2.0 -> 2.0.x-dev (dev)
Main -> dev-main (dev)
myfeature -> dev-myfeature (dev)

● Stability selection
“foo/bar”: “1.3.*@beta”
“foo/bar”: “2.0.x-dev”

“minimum-stability”: “alpha”

Aliases

● Dependency
name: “dep/foo”
require: {

“some/package”: “^1.2.0”
}

● My project
require: {

“dep/foo”: “^1.0.0”
“some/package”: “dev-myfix as 1.2.3”

}

Forking

● Best option: Avoid forking
○ Send a PR upstream
○ Work with upstream maintainers

● Option 2: Temporary fork
○ Urgent fix
○ Can’t wait for upstream merge

● Option 3: Permanent fork
○ Upstream no longer maintained
○ Upstream disagrees with your changes

Forking: Temporary fork

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0

rock 1.0

Packagist.org

require: {
zebra: “^1.0”
giraffe: “^1.0”
rock: “^1.0”

}

Forking: Temporary fork

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0

rock 1.0

Packagist.org

repositories: [
 type: “vcs”,
 url: “gh.com/my/gi”
],
require: {

zebra: “^1.0”
giraffe: “dev-x as 1.0”
rock: “^1.0”

}

giraffe 1.0

Forking: Temporary fork

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0

rock 1.0

Packagist.org

repositories: [
 type: “vcs”,
 url: “gh.com/my/gi”
],
require: {

zebra: “^1.0”
giraffe: “dev-x as 1.0”
rock: “^1.0”

}

giraffe 1.0

Forking: Temporary fork

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0

rock 1.0

Packagist.org

giraffe 1.1repositories: [
 type: “vcs”,
 url: “gh.com/my/gi”
],
require: {

zebra: “^1.0”
giraffe: “dev-x as 1.0”
rock: “^1.0”

}

Forking: Temporary fork

● Good quick solution
● Problematic in the long run

○ Have to monitor upstream package for new releases
○ VCS repositories are slow

■ Can be solved by using your own Composer repository
● Private Packagist
● GitLab Packages
● Sonatype Nexus Repository
● JFrog Artifactory
● etc.

Forking: Temporary fork

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0

rock 1.0

Packagist.org

repositories: [{
 type: “vcs”,
 url: “gh.com/my/gi”
}],
require: {

zebra: “^1.0”
giraffe: “dev-x as 1.0”
rock: “^1.0”

}

giraffe 1.0

Forking: Temporary fork

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0

rock 1.0

Packagist.org

repositories: [{
 type: “composer”,
 url: “packagist.com/my/”
}],
require: {

zebra: “^1.0”
giraffe: “dev-x as 1.0”
rock: “^1.0”

}

giraffe 1.0

Forking: Permanent fork

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0

rock 1.0

Packagist.org

require: {
zebra: “^1.0”
giraffe: “^1.0”
rock: “^1.0”

}

Forking: Temporary fork

Project zebra 1.0

my-g 1.0

horse 1.0

duck 1.0

rock 1.0

Packagist.org

repositories: [{
 type: “vcs”,
 url: “gh.com/my/gi”
}],
require: {

zebra: “^1.0”
my-g: “^1.0”
rock: “^1.0”

}

name: “my-g”
replace: {“giraffe”: “^1.0”}

giraffe 1.0

Forking: Temporary fork

Project zebra 1.0

my-g 1.0

horse 1.0

duck 1.0

rock 1.0

Packagist.org

require: {
zebra: “^1.0”
my-g: “^1.0”
rock: “^1.0”

}

my-g:
replace: {“giraffe”: “^1.0”}

giraffe 1.0

Forking: Temporary fork

Project zebra 1.0

my-g 1.0

horse 1.0

duck 1.0

rock 1.0

Packagist.org

repositories: [{
 type: “vcs”,
 url: “gh.com/my/gi”
},{
 type: “vcs”,
 url: “gh.com/my/ro”
}],
require: {

zebra: “^1.0”
my-g: “^1.0”
my-ro: “^1.0”

}

name: “my-g”
replace: {“giraffe”: “^1.0”}

giraffe 1.0

my-r 1.0

Forking: Temporary fork

Project zebra 1.0

my-g 1.0

horse 1.0

duck 1.0

rock 1.0

Packagist.org

repositories: [{
 type: “composer”,
 url: “packagist.com/my/”
}],

require: {
zebra: “^1.0”
my-g: “^1.0”
my-ro: “^1.0”

}

name: “my-g”
replace: {“giraffe”: “^1.0”}

giraffe 1.0

my-r 1.0

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0

Now each package releases 1.1

rock 1.0

Partial Updates

Partial Updates

Project zebra 1.1

giraffe 1.0

horse 1.0

duck 1.0

$ composer update --dry-run zebra/zebra
Updating zebra/zebra (1.0 -> 1.1)

rock 1.0

Partial Updates

Project zebra 1.1

giraffe 1.0

horse 1.1

duck 1.0

$ composer update --dry-run zebra/zebra --with-dependencies
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

rock 1.0

Partial Updates

Project zebra 1.1

giraffe 1.1

horse 1.0

duck 1.0

$ composer update --dry-run zebra/zebra giraffe/giraffe
Updating zebra/zebra (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)

rock 1.0

Partial Updates

Project zebra 1.1

giraffe 1.1

horse 1.1

duck 1.1

$ composer update zebra/zebra giraffe/giraffe --with-dependencies
Updating duck/duck (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

rock 1.0

Partial Updates

Project zebra 1.1

giraffe 1.1

horse 1.1

duck 1.1

$ composer update zebra/zebra --with-all-dependencies
Updating duck/duck (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

rock 1.0

Partial Updates

Project zebra 1.1

giraffe 1.0

horse 1.1

duck 1.0

$ composer update zebra/zebra --with-dependencies
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

rock 1.0

Partial Updates

Project zebra 1.1

giraffe 1.1

horse 1.1

duck 1.1

$ composer update zebra/zebra --with-all-dependencies
Updating duck/duck (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

rock 1.0

update --minimal-changes

● Since Composer 2.7
● Problem

○ I want to update one dependency
○ There’s a conflict
○ I need to update more, but I don’t want to update everything

● Solution
○ Partial updates with dependencies but keeping them at the same version as the lock file if

possible

update --minimal-changes

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0

Now each package releases 1.1

- zebra 1.1 requires horse ^1.1
- horse 1.1 requires giraffe ^1.1
- giraffe 1.1 still requires duck ^1.0

rock 1.0

update --minimal-changes

Project zebra 1.1

giraffe 1.1

horse 1.1

duck 1.1

$ composer update zebra/zebra --with-all-dependencies
Updating duck/duck (1.0 -> 1.1)
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

rock 1.0

update --minimal-changes

Project zebra 1.1

giraffe 1.1 duck 1.0

$ composer update zebra/zebra --with-all-dependencies --minimal-changes
Updating giraffe/giraffe (1.0 -> 1.1)
Updating horse/horse (1.0 -> 1.1)
Updating zebra/zebra (1.0 -> 1.1)

horse 1.1

rock 1.0

update --patch-only

● Since Composer 2.8
● Only update Z in semver X.Y.Z
● Can be combined with other update options

update --patch-only

Project zebra 1.0

giraffe 1.0

horse 1.0

duck 1.0

Now each package releases 1.1 and 1.0.1

rock 1.0

update --patch-only

Project zebra 1.0.1

giraffe 1.0.1 duck 1.0

$ composer update zebra/zebra --with-all-dependencies --minimal-changes --patch-only
Updating giraffe/giraffe (1.0 -> 1.0.1)
Updating horse/horse (1.0 -> 1.0.1)
Updating zebra/zebra (1.0 -> 1.0.1)

horse 1.0.1

rock 1.0

composer bump

● Since Composer 2.4
● update --bump-after-update since Composer 2.8
● Increases lower limits of composer.json constraints to current versions

“require”: { “zebra/zebra”: “^1.2.3” }

$ composer update --bump-after-update
 Updating zebra/zebra (1.3.5 -> 1.4.2)

“require”: { “zebra/zebra”: “^1.4.2” }

● Do not use on libraries for others, will limit compatibility

Composer 2.4: composer audit

● composer audit Command
○ Lists vulnerable versions in composer.lock
○ Uses packagist.org vulnerability db API

■ GitHub advisory database
■ FriendsOfPHP/security-advisories

○ Returns non-zero if vulnerabilities found -> can check in CI

● composer update implies audit --format=summary
● composer require --dev roave/security-advisories:dev-latest

Update Dependencies Frequently

● Smaller changes
○ Smaller likelihood of failures
○ Less fear to update
○ Less chance of falling behind a lot

● Set up a schedule or regular reminder to run dependency updates
● Set up alerting for discovered vulnerabilities in deps:

SCA tools (Software Composition Analysis)
○ GitHub Dependabot
○ Snyk
○ Aikido
○ Mend SCA
○ Private Packagist Security Monitoring
○ many more

Update Dependencies Frequently

Better yet: Automate your updates

○ Mend Renovate https://www.mend.io/renovate/
○ GitHub Dependabot https://github.com/dependabot

Get a pull request anytime an update is necessary

https://www.mend.io/renovate/
https://github.com/dependabot

NOT DEV

Caution!

Private Packagist
Update Review

GitHub
BitBucket
GitLab

Update Dependencies Frequently

Better yet: Automate your updates

○ Mend Renovate https://www.mend.io/renovate/
○ GitHub Dependabot https://github.com/dependabot
○ Conductor by Private Packagist https://packagist.com/features/conductor

Get a pull request anytime an update is necessary

https://www.mend.io/renovate/
https://github.com/dependabot
https://packagist.com/features/conductor

Introducing

Automatic dependency
updates for Composer

Sign up now for Early Access

Differences from other solutions

● composer update runs in your CI
○ more control
○ better debugging options
○ full support for Composer plugins
○ run custom code before doing the update with access to your

secrets

● Made for PHP
○ better default grouping behavior
○ no unexpected / unexplained updates
○ suitable use of composer update arguments like

--minimal-changes
○ Care about high quality PHP support

Working with monorepos

● Path repositories
“repositories”: [
 {"type":"path", "url": "../internal/lib"}
]

● Creates a symlink in vendor/
● Automatically infers version from git state

○ But: composer.json changes in deps require composer update

composer.lock

- Contents
- all dependencies including transitive dependencies

- all metadata (name, description, require, autoload, extra, …)

- Exact version for every package
- Download URLs (source, dist, mirrors)

- Purpose
- Reproducibility across teams, users and servers
- Isolation of bug reports to code vs. potential dependency breaks
- Transparency through explicit updating process

Commit The Lock File

- If you don’t
- composer install without a lock file is a composer update
- You’re not managing your dependencies, they’re just doing whatever they want

- Conflict can randomly occur on install
- You may not get the same code

- The lock file exists to be commited!

The Lock file will conflict

Day 0: “Initial Commit”

Project

zebra 1.0 giraffe 1.0

Project

zebra 1.0 giraffe 1.0

main

composer.lock
- zebra 1.0
- giraffe 1.0

dna-upgrade

composer.lock
- zebra 1.0
- giraffe 1.0

Week 2: Strange new zebras require duck

Project

zebra 1.1 giraffe 1.0

Project

zebra 1.0 giraffe 1.0

duck 1.0

main

composer.lock
- zebra 1.1
- giraffe 1.0
- duck 1.0

dna-upgrade

composer.lock
- zebra 1.0
- giraffe 1.0

Week 3: Duck 2.0

Week 4: Giraffe evolves to require duck 2.0

Project

zebra 1.1 giraffe 1.0

Project

zebra 1.0 giraffe 1.2

duck 1.0 duck 2.0

main

composer.lock
- zebra 1.1
- giraffe 1.0
- duck 1.0

dna-upgrade

composer.lock
- zebra 1.0
- giraffe 1.2
- duck 2.0

Text-based Merge

Project

zebra 1.1 giraffe 1.2

duck 1.0 duck 2.0

Merge results in invalid dependenciesmain

composer.lock
- zebra 1.1
- giraffe 1.2
- duck 1.0
- duck 2.0

Reset composer.lock

Project

giraffe 1.0

dna-upgrade

composer.lock
- zebra 1.1
- giraffe 1.0
- duck 1.0

zebra 1.1

duck 1.0

git checkout <refspec> -- composer.lock
git checkout main -- composer.lock

Apply the update again

Project

zebra 1.1 giraffe 1.2

duck 2.0

composer update giraffe
 --with-dependencies

main

composer.lock
- zebra 1.1
- giraffe 1.2
- duck 2.0

How to resolve lock merge conflicts?

- composer.lock cannot be merged without conflicts
- contains hash over relevant composer.json values

- git checkout <refspec> -- composer.lock
- git checkout main -- composer.lock

- Reapply changes
- composer update <list of deps>
- put exact command in git commit message

Never Deploy without a Lock
File

Do not run composer update during deployments

Recommended use of Composer in your
Deployment Process

- commit composer.lock
- CI/CD

- run composer install (not update!)
- generate any potentially generated code
- dump an optimized autoloader
- package everything into an archive

- deployment
- upload to production servers, move in

place
- (run composer check-platform-reqs)
- switch webserver to use new code

Result

- no surprises in production
- same dependency versions as tested
- no risk of composer conflicts during

deploy
- code doesn’t change at runtime

- deploying to multiple servers
- exact same state everywhere
- no unnecessarily repeated work

Caching

● First install
○ Download foo/bar 1.0.0 ref c0d2bc8b
○ Write to $HOME/.composer/cache/files/foo/bar/c0d2bc8b.zip
○ Unzip to vendor/foo/bar/

● Switch branches, next install
○ Download foo/bar 1.1.3 ref 3e708f6c
○ Write to $HOME/.composer/cache/files/foo/bar/3e708f6c.zip
○ Unzip to vendor/foo/bar/

● Switch back to original branch, install again
○ Unzip $HOME/.composer/cache/files/foo/bar/c0d2bc8b.zip to vendor/foo/bar/

Caching

● CI Considerations
○ Multiple developers
○ Multiple branches
○ Concurrent builds
○ CI specific caching properties, e.g. per-branch cache state?

● Caching vendor/
○ Builds on different composer.lock states with shared cache require frequent re-downloading of

dependencies
○ Writing modified state can be slow

● Caching $HOME/.composer/cache
○ Can easily be shared across builds without having to delete or overwrite contents
○ Still frequent unzipping

■ But: Can be combined with vendor/ caching to avoid re-downloading and unnecessary
unzipping

● Containers
○ Use filesystem layers to avoid re-installing entirely without lock file changes

Questions / Feedback?

 https://packagist.com

E-Mail contact@packagist.com
Bluesky @naderman.de
Mastodon @naderman@phpc.social
X @naderman

mailto:contact@packagist.com
https://bsky.app/profile/naderman.de
https://phpc.social/@naderman
https://twitter.com/naderman

